Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Apr;83(4):915–919. doi: 10.1104/pp.83.4.915

Induction of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum by High Salinity: Mass Increase and de Novo Synthesis of PEP-Carboxylase 1

Roswitha Höfner 1,2, Luz Vazquez-Moreno 1,2,2, Klaus Winter 1,2, Hans J Bohnert 1,2, Jürgen M Schmitt 1,2
PMCID: PMC1056474  PMID: 16665363

Abstract

Intact plants of the halophilic species Mesembryanthemum crystallinum were induced to exhibit Crassulacean acid metabolism by irrigation with nutrient solution containing 500 millimolar NaCl. During the induction period, the extractable activity of phosphoenolpyruvate carboxylase (PEPcase) increased approximately 40-fold. This increase was linearly correlated with a mass increase of PEPcase protein as measured by single radial immunodiffusion. De novo synthesis of PEPcase protein was shown by immunoprecipitation of the newly synthesized, radioactively labeled protein in leaf discs from salt-treated plants. Nontreated plants were characterized by a low level of the enzyme and low rates of PEPcase synthesis. Synthesis of this enzyme in leaf discs was correlated with the concentration of NaCl in the nutrient solution during growth.

Full text

PDF
915

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blair G. E., Ellis R. J. Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta. 1973 Aug 24;319(2):223–234. doi: 10.1016/0005-2787(73)90013-0. [DOI] [PubMed] [Google Scholar]
  3. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Fujita N., Miwa T., Ishijima S., Izui K., Katsuki H. The primary structure of phosphoenolpyruvate carboxylase of Escherichia coli. Nucleotide sequence of the ppc gene and deduced amino acid sequence. J Biochem. 1984 Apr;95(4):909–916. doi: 10.1093/oxfordjournals.jbchem.a134718. [DOI] [PubMed] [Google Scholar]
  6. Hallier U. W., Schmitt J. R., Heber U., Chaianova S. V., Volodarsky A. D. Ribulose-1,5-biphosphate carboxylase-deficient plastome mutants of Oenothera. Biochim Biophys Acta. 1978 Oct 11;504(1):67–83. doi: 10.1016/0005-2728(78)90007-5. [DOI] [PubMed] [Google Scholar]
  7. Katagiri F., Kodaki T., Fujita N., Izui K., Katsuki H. Nucleotide sequence of the phosphoenolpyruvate carboxylase gene of the cyanobacterium Anacystis nidulans. Gene. 1985;38(1-3):265–269. doi: 10.1016/0378-1119(85)90227-6. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  10. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Winter K., Foster J. G., Edwards G. E., Holtum J. A. Intracellular Localization of Enzymes of Carbon Metabolism in Mesembryanthemum crystallinum Exhibiting C(3) Photosynthetic Characteristics or Performing Crassulacean Acid Metabolism. Plant Physiol. 1982 Feb;69(2):300–307. doi: 10.1104/pp.69.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES