Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Apr;83(4):973–976. doi: 10.1104/pp.83.4.973

Regulation of Climacteric Respiration in Ripening Avocado Fruit 1

Alan B Bennett 1,2,3, Gary M Smith 1,2,3, Brenda G Nichols 1,2,3,2
PMCID: PMC1056485  PMID: 16665374

Abstract

Ripening of avocado fruit is associated with a dramatic increase in respiration. In vivo31P nuclear magnetic resonance spectroscopy revealed large increases in ATP levels accompanying the increase in respiration. Both glycolytic enzymes, phosphofructokinase, and pyrophosphate: fructose-6-phosphate phosphotransferase were present in avocado fruit with the latter activity being highly stimulated by fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate levels increased approximately 90% at the onset of ripening, suggesting that the respiratory increase in ripening avocado fruit may be regulated by the activation of pyrophosphate:fructose-6-phosphate phosphotransferase by an increase in fructose 2,6-bisphosphate.

Full text

PDF
973

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awad M., Young R. E. Postharvest Variation in Cellulase, Polygalacturonase, and Pectinmethylesterase in Avocado (Persea americana Mill, cv. Fuerte) Fruits in Relation to Respiration and Ethylene Production. Plant Physiol. 1979 Aug;64(2):306–308. doi: 10.1104/pp.64.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carnal N. W., Black C. C. Pyrophosphate-dependent 6-phosphofructokinase, a new glycolytic enzyme in pineapple leaves. Biochem Biophys Res Commun. 1979 Jan 15;86(1):20–26. doi: 10.1016/0006-291x(79)90376-0. [DOI] [PubMed] [Google Scholar]
  3. Chalmers D. J., Rowan K. S. The climacteric in ripening tomato fruit. Plant Physiol. 1971 Sep;48(3):235–240. doi: 10.1104/pp.48.3.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clegg M. D., Sullivan C. Y., Eastin J. D. A sensitive technique for the rapid measurement of carbon dioxide concentrations. Plant Physiol. 1978 Dec;62(6):924–926. doi: 10.1104/pp.62.6.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Millerd A., Bonner J., Biale J. B. The Climacteric Rise in Fruit Respiration as Controlled by Phosphorylative Coupling. Plant Physiol. 1953 Jul;28(3):521–531. doi: 10.1104/pp.28.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Solomos T., Laties G. G. Similarities between the Actions of Ethylene and Cyanide in Initiating the Climacteric and Ripening of Avocados. Plant Physiol. 1974 Oct;54(4):506–511. doi: 10.1104/pp.54.4.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Stitt M., Cséke C., Buchanan B. Ethylene-induced increase in fructose-2,6-bisphosphate in plant storage tissues. Plant Physiol. 1986 Jan;80(1):246–248. doi: 10.1104/pp.80.1.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Stitt M., Gerhardt R., Kürzel B., Heldt H. W. A role for fructose 2,6-bisphosphate in the regulation of sucrose synthesis in spinach leaves. Plant Physiol. 1983 Aug;72(4):1139–1141. doi: 10.1104/pp.72.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]
  10. Young R. E., Biale J. B. Phosphorylation in avocado fruit slices in relation to the respiratory climacteric. Plant Physiol. 1967 Oct;42(10):1357–1362. doi: 10.1104/pp.42.10.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES