Abstract
Etiolated Avena sativa L. seedlings grown in the presence of gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid) contained reduced levels of phytochrome as shown by spectrophotometric and immunochemical assays. Photochromic phytochrome levels in gabaculine-grown plants were estimated to be 20% of control plants, while immunoblot analysis showed that the phytochrome protein moiety was present at approximately 50% of control levels. Gabaculine-grown seedlings administered either 5-aminolevulinic acid or biliverdin exhibited a rapid increase of spectrophotometrically detectable phytochrome. Phytochrome concentrations estimated immunochemically did not similarly increase throughout treatment with either compound. Similar experiments with 5-amino[4-14C] levulinic acid showed radiolabeling of phytochrome with kinetics that paralleled the spectrally detected increase. These results are consistent with (a) the intermediacy of both 5-aminolevulinic acid and biliverdin in the biosynthetic pathway of the phytochrome chromophore and (b) the lack of coordinate regulation of chromophore and apoprotein synthesis in Avena seedlings.
Full text
PDF![304](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ab/1056575/f0778182823c/plntphys00615-0112.png)
![305](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ab/1056575/e25e7b937599/plntphys00615-0113.png)
![306](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ab/1056575/a7433885b7b4/plntphys00615-0114.png)
![307](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ab/1056575/c452500a552d/plntphys00615-0115.png)
![308](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ab/1056575/8c9eac59e8cd/plntphys00615-0116.png)
![309](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ab/1056575/fb75985a5ea0/plntphys00615-0117.png)
![310](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ab/1056575/469d3706d7df/plntphys00615-0118.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beale S. I., Cornejo J. Biosynthesis of phycocyanobilin from exogenous labeled biliverdin in Cyanidium caldarium. Arch Biochem Biophys. 1983 Nov;227(1):279–286. doi: 10.1016/0003-9861(83)90372-7. [DOI] [PubMed] [Google Scholar]
- Briggs W. R., Siegelman H. W. Distribution of Phytochrome in Etiolated Seedlings. Plant Physiol. 1965 Sep;40(5):934–941. doi: 10.1104/pp.40.5.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S. B., Holroyd J. A., Vernon D. I. Biosynthesis of phycobiliproteins. Incorporation of biliverdin into phycocyanin of the red alga Cyanidium caldarium. Biochem J. 1984 May 1;219(3):905–909. doi: 10.1042/bj2190905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colbert J. T., Hershey H. P., Quail P. H. Autoregulatory control of translatable phytochrome mRNA levels. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2248–2252. doi: 10.1073/pnas.80.8.2248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duggan J. X., Meller E., Gassman M. L. Catabolism of 5-Aminolevulinic Acid to CO(2) by Etiolated Barley Leaves. Plant Physiol. 1982 Jan;69(1):19–22. doi: 10.1104/pp.69.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duggan J. X., Meller E., Gassman M. L. Catabolism of porphobilinogen by etiolated barley leaves. Plant Physiol. 1982 Mar;69(3):602–608. doi: 10.1104/pp.69.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner G., Gorton H. L. Inhibition of phytochrome synthesis by gabaculine. Plant Physiol. 1985 Mar;77(3):540–543. doi: 10.1104/pp.77.3.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
- Houghten R. A., Li C. H. Reduction of sulfoxides in peptides and proteins. Methods Enzymol. 1983;91:549–559. doi: 10.1016/s0076-6879(83)91050-9. [DOI] [PubMed] [Google Scholar]
- Jones A. M., Allen C. D., Gardner G., Quail P. H. Synthesis of phytochrome apoprotein and chromophore are not coupled obligatorily. Plant Physiol. 1986 Aug;81(4):1014–1016. doi: 10.1104/pp.81.4.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lagarias J. C. Bile pigment--protein interactions. Coupled oxidation of cytochrome c. Biochemistry. 1982 Nov 9;21(23):5962–5967. doi: 10.1021/bi00266a036. [DOI] [PubMed] [Google Scholar]
- Lagarias J. C., Mercurio F. M. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro. J Biol Chem. 1985 Feb 25;260(4):2415–2423. [PubMed] [Google Scholar]
- Litts J. C., Kelly J. M., Lagarias J. C. Structure-function studies on phytochrome. Preliminary characterization of highly purified phytochrome from Avena sativa enriched in the 124-kilodalton species. J Biol Chem. 1983 Sep 25;258(18):11025–11031. [PubMed] [Google Scholar]
- McDonagh A. F., Palma L. A. Preparation and properties of crystalline biliverdin IX alpha. Simple methods for preparing isomerically homogeneous biliverdin and [14C[biliverdin by using 2,3-dichloro-5,6-dicyanobenzoquinone. Biochem J. 1980 Aug 1;189(2):193–208. doi: 10.1042/bj1890193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
- Rando R. R., Bangerter F. W. The irreversible inhibition of mouse brain gamma-aminobutyric acid (GABA)-alpha-ketoglutaric acid transaminase by gabaculine. J Am Chem Soc. 1976 Oct 13;98(21):6762–6764. doi: 10.1021/ja00437a090. [DOI] [PubMed] [Google Scholar]
- Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem. 1981 Sep 1;116(1):53–64. doi: 10.1016/0003-2697(81)90321-3. [DOI] [PubMed] [Google Scholar]
- Skinner M. K., Griswold M. D. Fluorographic detection of radioactivity in polyacrylamide gels with 2,5-diphenyloxazole in acetic acid and its comparison with existing procedures. Biochem J. 1983 Jan 1;209(1):281–284. doi: 10.1042/bj2090281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]