Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Jun;84(2):399–403. doi: 10.1104/pp.84.2.399

Purification and Properties of Acid Phosphatase-1 from a Nematode Resistant Tomato Cultivar

Elizabeth M Paul 1,1, Valerie M Williamson 1,2
PMCID: PMC1056591  PMID: 16665451

Abstract

In tomato the acid phosphatase-1 isozyme (Apase-1) is inherited as a single locus linked to the nematode resistance gene (Mi). The Apase-11 electrophoretic variant has been purified from a tomato cell suspension culture using ion exchange and concanavalin A sepharose affinity chromatography. A cellulose acetate electrophoresis method was used to distinguish Apase-11 rapidly from other Apase isozymes in tomato. The subunit molecular weight of the purified enzyme was estimated to be 31,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native size of the enzyme, which is reported to be a dimer, was determined to be approximately 51,000 by high performance liquid chromatography gel filtration. Apase-11 has a lower pH optimum and a distinct substrate specificity as compared to Apases extracted from tomato fruit or from other plant species. The amino acid composition of Apase-11 is similar to that of a potato Apase.

Full text

PDF
399

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Cornish-Bowden A. Critical values for testing the significance of amino acid composition indexes. Anal Biochem. 1980 Jul 1;105(2):233–238. doi: 10.1016/0003-2697(80)90450-9. [DOI] [PubMed] [Google Scholar]
  3. Dupont F. M., Staraci L. C., Chou B., Thomas B. R., Williams B. G., Mudd J. B. Effect of Chilling Temperatures upon Cell Cultures of Tomato. Plant Physiol. 1985 Jan;77(1):64–68. doi: 10.1104/pp.77.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Felenbok B. Acid phosphomonoesterase from Phaseolus mungo. Purification and characterization. Eur J Biochem. 1970 Nov;17(1):165–170. doi: 10.1111/j.1432-1033.1970.tb01149.x. [DOI] [PubMed] [Google Scholar]
  5. Fobes J. F. Trisomic analysis of isozymic loci in tomato species: segregation and dosage effects. Biochem Genet. 1980 Apr;18(3-4):401–421. doi: 10.1007/BF00484252. [DOI] [PubMed] [Google Scholar]
  6. Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
  7. Heinrikson R. L. Purification and characterization of a low molecular weight acid phosphatase from bovine liver. J Biol Chem. 1969 Jan 25;244(2):299–307. [PubMed] [Google Scholar]
  8. Jacobs M. M., Nyc J. F., Brown D. M. Isolation and chemical properties of a repressible acid phosphatase in Neurospora crassa. J Biol Chem. 1971 Mar 10;246(5):1419–1425. [PubMed] [Google Scholar]
  9. Kruzel M., Morawiecka B. Acid phosphatase of potato tubers (Solanum tuberosum L). Purification, properties, sugar and amino acid composition. Acta Biochim Pol. 1982;29(3-4):321–330. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Shin K. H., Nakagawa H., Tsurufuji S. Analysis of time sequence of glucocorticoid action on granulomatous inflammation. Chem Pharm Bull (Tokyo) 1975 Sep;23(9):2070–2074. doi: 10.1248/cpb.23.2070. [DOI] [PubMed] [Google Scholar]
  12. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES