Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Jul;84(3):720–725. doi: 10.1104/pp.84.3.720

Vacuolar/Extravacuolar Distribution of Aminopeptidases in Giant Alga Chara australis and Partial Purification of One Such Enzyme 1

Yuji Moriyasu 1, Katsuhiro Sakano 1,2, Masashi Tazawa 1
PMCID: PMC1056658  PMID: 16665510

Abstract

The presence of two major aminopeptidases (aminopeptidases I and II) in the giant alga Chara australis was shown using polyacrylamide gel electrophoresis. Partially purified aminopeptidase I had a molecular weight of about 120,000, hydrolyzed both leucine-β-naphthylamide (pH optimum 6.0) and alanine-β-naphthylamide (pH optimum 7.5), and was located both inside and outside the vacuole. Aminopeptidase I was inhibited by p-chloromercuribenzoic acid, iodoacetic acid, 1,10-phenanthroline, and N-tosyl-l-phenylalanine chloromethyl ketone. Aminopeptidase II hydrolyzed alanine-β-naphthylamide but not leucine-β-naphthylamide and was located only outside the vacuole.

Full text

PDF
720

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  3. Glaumann H., Ericsson J. L., Marzella L. Mechanisms of intralysosomal degradation with special reference to autophagocytosis and heterophagocytosis of cell organelles. Int Rev Cytol. 1981;73:149–182. doi: 10.1016/s0074-7696(08)61288-7. [DOI] [PubMed] [Google Scholar]
  4. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  5. Hershko A., Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 1982;51:335–364. doi: 10.1146/annurev.bi.51.070182.002003. [DOI] [PubMed] [Google Scholar]
  6. Johnson R., Storey R. Aminopeptidase activity from germinated jojoba cotyledons. Plant Physiol. 1985 Nov;79(3):641–645. doi: 10.1104/pp.79.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kolehmainen L., Mikola J. Partial purification and enzymatic properties of an aminopeptidase from barley. Arch Biochem Biophys. 1971 Aug;145(2):633–642. doi: 10.1016/s0003-9861(71)80023-1. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lin W., Wittenbach V. A. Subcellular localization of proteases in wheat and corn mesophyll protoplasts. Plant Physiol. 1981 May;67(5):969–972. doi: 10.1104/pp.67.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nishimura M., Beevers H. Hydrolases in vacuoles from castor bean endosperm. Plant Physiol. 1978 Jul;62(1):44–48. doi: 10.1104/pp.62.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sopanen T., Mikola J. Purification and partial characterization of barley leucine aminopeptidase. Plant Physiol. 1975 May;55(5):809–814. doi: 10.1104/pp.55.5.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sopanen T. Purification and partial characterization of a dipeptidase from barley. Plant Physiol. 1976 Jun;57(6):867–871. doi: 10.1104/pp.57.6.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vodkin L. O., Scandalios J. G. Comparative properties of genetically defined peptidases in maize. Biochemistry. 1980 Sep 30;19(20):4660–4667. doi: 10.1021/bi00561a019. [DOI] [PubMed] [Google Scholar]
  14. Wagner G. J., Mulready P., Cutt J. Vacuole/Extravacuole distribution of soluble protease in hippeastrum petal and triticum leaf protoplasts. Plant Physiol. 1981 Nov;68(5):1081–1089. doi: 10.1104/pp.68.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Waters S. P., Dalling M. J. Isolation and Some Properties of an Aminopeptidase from the Primary Leaf of Wheat (Triticum aestivum L.). Plant Physiol. 1984 May;75(1):118–124. doi: 10.1104/pp.75.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Waters S. P., Noble E. R., Dalling M. J. Intracellular Localization of Peptide Hydrolases in Wheat (Triticum aestivum L.) Leaves. Plant Physiol. 1982 Mar;69(3):575–579. doi: 10.1104/pp.69.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wittenbach V. A., Lin W., Hebert R. R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol. 1982 Jan;69(1):98–102. doi: 10.1104/pp.69.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES