Abstract
A uracil-DNA glycosylase activity has been purified about 750-fold from the chloroplasts of light-grown Zea mays seedlings. This report represents the first direct demonstration of a DNA-glycosylase repair activity in chloroplasts. The activity, in part, was associated with a chloroplast Triton X-100 sensitive membrane. Its apparent Km was 1.0 micromolar for a poly(dA-dT/U) substrate, and its molecular weight, as determined by gel filtration, was 18,000. The enzyme exhibited optimal activity at pH 7.0 with an atypically narrow pH tolerance. Activity was inhibited greater than 60% by 10 millimolar NaCl, 5 millimolar MgCl2, or 5 millimolar EDTA. Enzyme activity was inhibited 80% by 10 millimolar N-ethylmaleimide, a sulfhydryl group-blocking agent. The activity removed uracil more rapidly from single-stranded DNA than from double-stranded DNA. With this report, uracil-DNA glycosylase activity has now been attributed to all three DNA-containing organelles of eucaryotic cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. T., Friedberg E. C. The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res. 1980 Feb 25;8(4):875–888. [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bensen R. J., Warner H. R. The Partial Purification and Characterization of Nuclear and Mitochondrial Uracil-DNA Glycosylase Activities from Zea mays Seedlings. Plant Physiol. 1987 Jan;83(1):149–154. doi: 10.1104/pp.83.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bessman M. J., Lehman I. R., Adler J., Zimmerman S. B., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. III. THE INCORPORATION OF PYRIMIDINE AND PURINE ANALOGUES INTO DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):633–640. doi: 10.1073/pnas.44.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaisdell P., Warner H. Partial purification and characterization of a uracil-DNA glycosylase from wheat germ. J Biol Chem. 1983 Feb 10;258(3):1603–1609. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brambl R. Mitochondrial biogenesis during fungal spore germination. Development of cytochrome c oxidase activity. Arch Biochem Biophys. 1977 Jul;182(1):273–281. doi: 10.1016/0003-9861(77)90308-3. [DOI] [PubMed] [Google Scholar]
- Cone R., Duncan J., Hamilton L., Friedberg E. C. Partial purification and characterization of a uracil DNA N-glycosidase from Bacillus subtilis. Biochemistry. 1977 Jul 12;16(14):3194–3201. doi: 10.1021/bi00633a024. [DOI] [PubMed] [Google Scholar]
- Crosby B., Prakash L., Davis H., Hinkle D. C. Purification and characterization of a uracil-DNA glycosylase from the yeast. Saccharomyces cerevisiae. Nucleic Acids Res. 1981 Nov 11;9(21):5797–5809. doi: 10.1093/nar/9.21.5797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geider K. DNA synthesis in nucleotide-permeable Escherichia coli cells. The effects of nucleotide analogues on DNA synthesis. Eur J Biochem. 1972 Jun 9;27(3):554–563. doi: 10.1111/j.1432-1033.1972.tb01872.x. [DOI] [PubMed] [Google Scholar]
- Kessler B. Isolation, characterization and distribution of a DNA ligase from higher plants. Biochim Biophys Acta. 1971 Jul 29;240(4):496–505. doi: 10.1016/0005-2787(71)90706-4. [DOI] [PubMed] [Google Scholar]
- Koontz S. W., Schimmel P. R. Aminoacyl-tRNA synthetase-catalyzed cleavage of the glycosidic bond of 5-halogenated uridines. J Biol Chem. 1979 Dec 25;254(24):12277–12280. [PubMed] [Google Scholar]
- Krokan H., Wittwer C. U. Uracil DNa-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs. Nucleic Acids Res. 1981 Jun 11;9(11):2599–2613. doi: 10.1093/nar/9.11.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leblanc J. P., Laval J. Comparison at the molecular level of uracil-DNA glycosylases from different origins. Biochimie. 1982 Aug-Sep;64(8-9):735–738. doi: 10.1016/s0300-9084(82)80120-x. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977 May 25;252(10):3286–3294. [PubMed] [Google Scholar]
- Lindahl T., Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974 Jul 30;13(16):3405–3410. doi: 10.1021/bi00713a035. [DOI] [PubMed] [Google Scholar]
- McKown R. L., Tewari K. K. Purification and properties of a pea chloroplast DNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2354–2358. doi: 10.1073/pnas.81.8.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prior J. J., Maley J., Santi D. V. Adducts across the 5,6-double bond of pyrimidines. The mechanism of dehydration of 1-substituted uracil photohydrates. J Biol Chem. 1984 Feb 25;259(4):2422–2428. [PubMed] [Google Scholar]
- Prior J. J., Santi D. V. On the mechanism of the acid-catalyzed hydrolysis of uridine to uracil. Evidence for 6-hydroxy-5,6-dihydrouridine intermediates. J Biol Chem. 1984 Feb 25;259(4):2429–2434. [PubMed] [Google Scholar]
- Sala F., Amileni A. R., Parisi B., Spadari S. A gamma-like DNA polymerase in spinach chloroplasts. Eur J Biochem. 1980 Nov;112(2):211–217. doi: 10.1111/j.1432-1033.1980.tb07196.x. [DOI] [PubMed] [Google Scholar]
- Small G. D., Greimann C. S. Photoreactivation and dark repair of ultraviolet light-induced pyrimidine dimers in chloroplast DNA. Nucleic Acids Res. 1977 Aug;4(8):2893–2902. doi: 10.1093/nar/4.8.2893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talpaert-Borlè M., Liuzzi M. Base-excision repair in carrot cells. Partial purification and characterization of uracil-DNA glycosylase and apurinic/apyrimidinic endodeoxyribonuclease. Eur J Biochem. 1982 Jun;124(3):435–440. [PubMed] [Google Scholar]
- Thibodeau L., Verly W. G. Purification and properties of a plant endonuclease specific for apurinic sites. J Biol Chem. 1977 May 25;252(10):3304–3309. [PubMed] [Google Scholar]
- Tomlin N. V., Aprelikova O. N., Barenfeld L. S. Enzymes from Micrococcus luteus involved in the initial steps of excision repair of spontaneous DNA lesions: uracil-DNA-glycosidase and apurinic-endonucleases. Nucleic Acids Res. 1978 Apr;5(4):1413–1428. doi: 10.1093/nar/5.4.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tye B. K., Chien J., Lehman I. R., Duncan B. K., Warner H. R. Uracil incorporation: a source of pulse-labeled DNA fragments in the replication of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1978 Jan;75(1):233–237. doi: 10.1073/pnas.75.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valerie K., Henderson E. E., deRiel J. K. Identification, physical map location and sequence of the denV gene from bacteriophage T4. Nucleic Acids Res. 1984 Nov 12;12(21):8085–8096. doi: 10.1093/nar/12.21.8085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wovcha M. G., Warner H. R. Synthesis and nucleolytic degradation of uracil-containing deoxyribonucleic acid by Escherichia coli deoxyribonucleic acid polymerase. I. J Biol Chem. 1973 Mar 10;248(5):1746–1750. [PubMed] [Google Scholar]
