Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1965 May;13(3):478–485. doi: 10.1128/am.13.3.478-485.1965

Thermal Destruction Kinetics of a Lactic Streptococcal Bacteriophage1

Donald R Daoust 1,2, Hamed M El-Bisi 1,3, Warren Litsky 1
PMCID: PMC1058276  PMID: 14325292

Abstract

The aim of the study was to elucidate the kinetics of thermal destruction of a lactic streptococcal bacteriophage, and to determine the effect of varied propagation and heating conditions on its thermoresistance. The propagation medium and temperature affect the degree of thermostability of the phage produced; higher incubation temperature enhances thermostability. The composition and reaction of the heating menstruum are also of significance. Phage thermoresistance increased significantly with the phosphate and whey levels. The effect of various minerals was difficult to resolve, mainly because of the bimodal nature of the survival curve. Thermoresistance was highest at pH 6, intermediate at pH 7, and lowest at pH 8. The kinetics of inactivation of this phage deviated from those of a first-order reaction. Consequently, a special treatment of the data was required in order to compute the various thermodynamic parameters that define the reaction. The high positive values of Q10, energy of inactivation, and entropy appear to indict protein denaturation as the cause of phage destruction.

Full text

PDF
478

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BABOS P., KASSANIS B. THERMAL INACTIVATION OF TOBACCO NECROSIS VIRUS. Virology. 1963 Jul;20:490–497. doi: 10.1016/0042-6822(63)90099-0. [DOI] [PubMed] [Google Scholar]
  2. CHERRY W. B., WATSON D. W. The Streptococcus lactis host-virus system; factors influencing quantitative measurement of the virus. J Bacteriol. 1949 Nov;58(5):601-10, illust. doi: 10.1128/jb.58.5.601-610.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRIEDMAN M., COWLES P. B. The bacteriophages of Bacillus megaterium. I. Serological, physical, and biological properties. J Bacteriol. 1953 Oct;66(4):379–385. doi: 10.1128/jb.66.4.379-385.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GORDON M. P., HUFF J. W., HOLLAND J. J. Heat inactivation of the infectious ribonucleic acids of polio and tobacco mosaic viruses. Virology. 1963 Mar;19:416–418. doi: 10.1016/0042-6822(63)90084-9. [DOI] [PubMed] [Google Scholar]
  5. HIATT C. W. KINETICS OF THE INACTIVATION OF VIRUSES. Bacteriol Rev. 1964 Jun;28:150–163. doi: 10.1128/br.28.2.150-163.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KAPLAN C. The heat inactivation of vaccinia virus. J Gen Microbiol. 1958 Feb;18(1):58–63. doi: 10.1099/00221287-18-1-58. [DOI] [PubMed] [Google Scholar]
  7. KAPLAN C. The influence of some metal ions and pH on the inactivation of vaccinia virus by heat. J Gen Microbiol. 1963 May;31:311–314. doi: 10.1099/00221287-31-2-311. [DOI] [PubMed] [Google Scholar]
  8. PATCH C. T. Thermal inactivation of Escherichia coli phage T5. Arch Biochem Biophys. 1959 Mar;81(1):273–275. doi: 10.1016/0003-9861(59)90196-1. [DOI] [PubMed] [Google Scholar]
  9. POTTER N. N., NELSON F. E. Effects of calcium on proliferation of lactic streptococcus bacteriophage. II. Studies of optimum concentrations in a partially defined medium. J Bacteriol. 1952 Jul;64(1):113–119. doi: 10.1128/jb.64.1.113-119.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. STAMATIN N. LES TEMP'ERATURES D'INACTIVATION ET DE MULTIPLICATION DES PHAGES CEREUS-ANTHRACIS-MYCOIDES. Ann Inst Pasteur (Paris) 1963 Sep;105:515–523. [PubMed] [Google Scholar]
  11. WALLIS C., YANG C. S., MELNICK J. L. Effect of cations on thermal inactivation of vaccinia, herpes simplex, and adenoviruses. J Immunol. 1962 Jul;89:41–46. [PubMed] [Google Scholar]
  12. WILKOWSKE H. H., NELSON F. E., PARMELEE C. E. Heat inactivation of bacteriophage strains active against lactic streptococci. Appl Microbiol. 1954 Sep;2(5):250–253. doi: 10.1128/am.2.5.250-253.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WOESE C. Thermal inactivation of animal viruses. Ann N Y Acad Sci. 1960 Jan 13;83:741–751. doi: 10.1111/j.1749-6632.1960.tb40943.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES