Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1966 Sep;14(5):746–753. doi: 10.1128/am.14.5.746-753.1966

Role of Methionine in Cephalosporin Synthesis

P G Caltrider 1, H F Niss 1
PMCID: PMC1058408  PMID: 6008128

Abstract

Methionine has an almost unique stimulatory effect on biosynthesis of cephalosporins (by Cephalosporium acremonium). No other sulfur-containing compound tested, except dl-methionine-dl-sulfoxide, replaced methionine. dl-Methionine stimulated the synthesis of cephalosporins when added after the growth phase. The utilization of inorganic sulfate was repressed by methionine. Experiments with l-methionine-S35 showed that essentially all the sulfur in the cephalosporins was derived from methionine. Sulfur-labeled compounds found in the soluble pool from cells grown with methionine-S35 were methionine, homocysteine, taurine, cystathionine, cysteic acid, glutathionine, and cysteine. dl-Serine-3-C14 was incorporated into the antibiotics, and its utilization was stimulated by methionine. l-Cysteine had a sparing effect on the incorporation of methionine-S35 and serine-C14 into the antibiotics. The data are consistent with the hypothesis that a cystathionine-mediated pathway is operative in the transfer of sulfur between methionine and cysteine.

Full text

PDF
746

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBU E., THOMAS R. Studies in the biosynthesis of fungal metabolites. 5. The utilization of sulphur-containing amino acids as pencillin side-chain precursors. Biochem J. 1963 Jun;87:648–652. doi: 10.1042/bj0870648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bent K. J., Morton A. G. Amino acid composition of fungi during development in submerged culture. Biochem J. 1964 Aug;92(2):260–269. doi: 10.1042/bj0920260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CLARK E., BOWBURY R. J. STUDIES OF METHIONINE SYNTHESIS IN COPRINUS LAGOPUS. J Gen Microbiol. 1964 Sep;36:333–339. doi: 10.1099/00221287-36-3-333. [DOI] [PubMed] [Google Scholar]
  4. DELAVIER-KLUTCHKO C., FLAVIN M. ENZYMATIC SYNTHESIS AND CLEAVAGE OF CYSTATHIONINE IN FUNGI AND BACTERIA. J Biol Chem. 1965 Jun;240:2537–2549. [PubMed] [Google Scholar]
  5. DEMAIN A. L. Biosynthesis of cephalosporin C and its relation to penicillin formation. Trans N Y Acad Sci. 1963 May;25:731–740. doi: 10.1111/j.2164-0947.1963.tb01914.x. [DOI] [PubMed] [Google Scholar]
  6. DEMAIN A. L., NEWKIRK J. F. Biosynthesis of cephalosporin C. Appl Microbiol. 1962 Jul;10:321–325. doi: 10.1128/am.10.4.321-325.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEMAIN A. L., NEWKIRK J. F., HENDLIN D. Effect of methionine, norleucine, and lysine derivatives on cephalosporin C formation in chemically defined media. J Bacteriol. 1963 Feb;85:339–344. doi: 10.1128/jb.85.2.339-344.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DEMAIN A. L. SYNTHESIS OF CEPHALOSPORIN C BY RESTING CELLS OF CEPHALOSPORIUM SP. Clin Med (Northfield) 1963 Nov;70:2045–2051. [PubMed] [Google Scholar]
  9. ENGLESBERG E. The irreversibility of methionine synthesis from cysteine in pasteurella pestis. J Bacteriol. 1952 May;63(5):675–680. doi: 10.1128/jb.63.5.675-680.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KAVANAGH F., TUNIN D., WILD G. D-methionine and the biosynthesis of cephalosporin N. Arch Biochem Biophys. 1958 Oct;77(2):268–274. doi: 10.1016/0003-9861(58)90075-4. [DOI] [PubMed] [Google Scholar]
  11. LARUE T. A. SPECTROPHOTOMETRIC DETERMINATION OF METHIONINE WITH PENTACYANOAMINOFERRATE. Anal Biochem. 1965 Jan;10:172–174. doi: 10.1016/0003-2697(65)90254-x. [DOI] [PubMed] [Google Scholar]
  12. Ott J. L., Godzeski C. W., Pavey D., Farran J. D., Horton D. R. Biosynthesis of Cephalosporin C: I. Factors Affecting the Fermentation. Appl Microbiol. 1962 Nov;10(6):515–523. doi: 10.1128/am.10.6.515-523.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ROWBURY R. J., WOODS D. D. Further studies on the repression of methionine synthesis in Escherichia coli. J Gen Microbiol. 1961 Jan;24:129–144. doi: 10.1099/00221287-24-1-129. [DOI] [PubMed] [Google Scholar]
  14. Raistrick H., Vincent J. M. Studies in the biochemistry of micro-organisms. 77. A survey of fungal metabolism of inorganic sulphates. Biochem J. 1948;43(1):90–99. [PMC free article] [PubMed] [Google Scholar]
  15. Rowbury R. J. Resistance to norleucine and control of methionine synthesis in Escherichia coli. Nature. 1965 May 29;206(987):962–963. doi: 10.1038/206962a0. [DOI] [PubMed] [Google Scholar]
  16. SEGEL I. H., JOHNSON M. J. Accumulation of intracellular inorganic sulfate by Penicillium chrysogenum. J Bacteriol. 1961 Jan;81:91–98. doi: 10.1128/jb.81.1.91-98.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TROWN P. W., SMITH B., ABRAHAM E. P. Biosynthesis of cephalosporin C from amino acids. Biochem J. 1963 Feb;86:284–291. doi: 10.1042/bj0860284. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES