Abstract
Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person’s life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.
Introduction
Cancer is considered the most lethal form of human malignancy and the leading cause of mortality globally.1−3 The National Cancer Institute defined a solid tumor as an abnormal tissue mass devoid of liquid or cysts, such as lymphomas, carcinomas, and sarcomas, that could be malignant or benign.4 However, the tumor is not always associated with cancer. At the same time, the majority of malignancies become solid tumors in the tissue where they first arise, such as the bladder, breast, cervical colon, endometrial, kidney, liver, lung, melanoma, mesothelioma, ovary, prostate, pancreas, skin, and thyroid.5 Similar to normal tissue, tumor neovascularization may involve angiogenesis, migration, immunosuppression, cell proliferation, invasion, vasculogenesis, and metastasis. The tumor vasculature is quite different from the vasculature of normal tissues both functionally and morphologically. Small tumors smaller than 2 mm in diameter are mostly perfused by nearby host tissues.6 In cases when a solid tumor reaches a threshold size, diffusion does not provide access to the inner tumor microenvironment. Therefore, the size of a tumor plays a significant role in dependent drug delivery mechanisms.7,8 Tumor growth and expansion are closely associated with newly emerging microvessels, implying that microcirculation is critical in the development, diagnosis, metastasis, and treatment of solid tumors.9,10 Also, blood flow to solid tumors is crucial in delivering chemotherapeutic agents to the tumor site.11,12 Nevertheless, compared to normal tissues, tumor tissues exhibit comparable arterial pressure but lower venous pressure. This pressure gradient leads to blood flow, which is insignificant in the core portion of a tumor but higher in the peripheral compartment.13 Moreover, the blood viscosity in the tumor microenvironment is higher than in the normal tissues, given the presence of tumor cells and more giant molecules like protein, causing an increase in the flow resistance in tumor microcirculation leading to compromised drug bioavailability at the target site. This justifies the heterogeneous blood flow within a solid tumor, which is lower within the tumor mass when compared with the marginal cells, leading to variable drug bioavailability and, thus, lesser therapeutic efficiency.
Current cancer statistics show that solid tumors comprise around 85% of all malignancies worldwide.14 The FDA has approved numerous monoclonal antibodies against immunological checkpoints PD-1, PD-L1, and CTLA-4 for cancer treatments, out of which a small number of 25% are employed as first-line treatment for solid tumors.15 This deficit may be attributable to the obstacles in obtaining enough exposure in the tumor microenvironment of solid tumors. The efficacy of cancer treatment in a solid tumor is contingent on the targeted and effective delivery of the therapeutic cargos to the tumor cells. Cases with inadequate drug delivery to the target site could develop residual tumor cells, leading to relapse and regrowth of tumors and possibly the buildout of resistant tumor cells.
Carcinoma is a broader classification of solid tumors, including breast, prostate, and colon cancer. Statistics have shown that invasive ductal carcinoma accounts for more than 80% of all breast cancer diagnoses and is the leading cause of cancer-related mortality in females. On the other hand, in the male population, prostate cancer is the most common malignancy that accounts for the fifth most significant cause of mortality among men. Colon cancer is also the leading cause of mortality in the US.16 The statistics show the urgency to immediately develop novel methods and tools to mitigate solid tumors. Nanotheranostic approaches involve using nanoparticles (NPs) for diagnostic and therapeutic purposes.17−19 Nanomedicine with theranostic capabilities can circulate through the body, avoid the host’s defense, and deliver drugs and diagnostic agents to the targeted site for cellular and molecular-level diagnosis and treatment.20−22 The therapeutic and diagnostic agents are combined into a single theranostic platform that can be linked to a biological ligand for targeted delivery. Nanotheranostics also offer responsive drug release, synergistic and combined therapy, codelivery of siRNA, multiple therapeutic approaches, oral administration, delivery to the brain through the blood–brain barrier, and protection from intracellular autophagy. Refer to Figure 1 for the basic understanding of the application of nanoparticles in both diagnosis and treatment. Exosome-based delivery systems are also under different stages of development for cancer treatment.23,24
Figure 1.
Cancer therapy helps the patient recover from the life-threatening disease. It includes multiple sectors such as therapeutic agents, formulations, and delivery routes. Therapeutic agents enrolled in cancer management are adoptive T cells, cytokines, vaccines, stem cells, chemicals, and many more. Similarly, formulation includes hydrogels, nanocrystals, viral vectors, nanocarriers, etc. The different delivery routes include injection, pills, intracranial, IV, and many more. Produced in Biorender.
The use of nanotheranostics in solid tumors, including drugs undergoing preclinical and clinical trials as well as current challenges and future issues, will be highlighted in this review. Arranja et al. presented the fundamental concepts behind the utilization of nanoparticles for targeting tumors, emphasizing the advantages associated with incorporating imaging techniques to identify suitable patients and customize nanomedicine therapies.25 In addition, Siddique et al. explored the latest breakthroughs in cancer theranostics facilitated by functionalized nanoparticles. By gaining insights into the ongoing advancements and progress in nanoparticle-based cancer theranostics, the authors cover the forthcoming obstacles and prospects in this innovative approach to treating cancer.26 However, this review delves into a specific aspect of nanothermostics in managing solid tumors using various materials. This review stands out from previous reviews in terms of its narrowed scope, innovative methodologies, incorporation of recent literature, and consideration of alternative viewpoints. By leveraging these distinguishing factors, this review aims to contribute new perspectives, deepen the understanding, and advance the knowledge within the field.
Epidemiology of Solid Tumors
According to a Global Burden Disease study, the cancer burden has expanded most in the low and low–middle social-demographic index (SDI) quintiles during the past decade (Figure 2). The findings of this thorough analysis indicate that the worldwide cancer burden is large and expanding, with burden varying by SDI. These findings give thorough and comparable estimates that have the potential to aid global efforts toward equitable cancer control. Such estimations are critical for enhancing global cancer outcome equity and attaining important SDG targets for cancer and other noncommunicable disease burden reduction.3
Figure 2.
Ranking of total cancer absolute disability-adjusted life years (DALYs) in 2019 among the 22 level 2 categories of disease in the Global Burden of Disease (GBD) study by Quintile of Sociodemographic Index (SDI) total cancers, excluding nonmelanoma skin cancer. The GBD study organized diseases and injuries into a hierarchy that was mutually exclusive and collectively exhaustive. More details of this hierarchy were previously published. Colors represent the ranking of the cause within a given location group (e.g., high SDI quintile) from red (highest ranking) to green (lowest ranking). The other noncommunicable diseases include congenital birth defects; urinary diseases and male infertility; gynecological diseases; hemoglobinopathies and hemolytic anemias; endocrine, metabolic, blood, and immune disorders; oral disorders; and sudden infant death syndrome. The other infectious diseases include meningitis; encephalitis; diphtheria; whooping cough; tetanus; measles; varicella and herpes zoster; acute hepatitis; and other unspecified infectious diseases. NMSC indicates nonmelanoma skin cancer; UI, uncertainty interval. Adopted under CCBY4 from ref (3). Copyright (2022) JAMA Oncology.
The prevalence of one or more types of cancer has burdened every nation in the world. According to GLOBOCAN 2020, there were 10.3 million cancer-related deaths and 19.3 million new disease cases worldwide.27 Of these instances, female breast cancer (11.7%), lung cancer (11.4%), and prostate cancer (7.3%) were the most frequently diagnosed cancers worldwide.27 The combined cancer mortality shows that of all cancer-related fatalities lung cancer (18%), liver cancer (8.3%), stomach cancer (7.7%), and breast cancer (6.9%) were the leading causes of cancer death. According to data on cancer incidence and mortality by sex, the most common cancers found in men are lung (14.3%), prostate (14.1%), nonmelanoma skin (7.2%), and stomach (7.1%) cancers.28 In contrast, the most common cancers found in women are breast (24.5%), lung (8.4%), and cervix (6.5%) cancers.29
Cancer, behind cardiovascular disorders, is the second most significant cause of disease-associated mortality worldwide.30 A complete investigation of cancer related to the environment, social, and economic conditions and hereditary factors can be done using country-specific counts and analyses of cancer incidences and deaths.29 The country-specific authorities provide information on specific regional efforts to avoid or control cancer programs and more comprehensive data on regional cancer incidences and mortality. The country-specific examination of cancer burden also emphasizes prioritizing regional and national efforts to prevent cancer based on the cancer patterns seen.29
Challenges in the Management of Solid Tumors
Treating solid tumors is a challenging task for the healthcare system. Current diagnoses and treatments, even the standard ones, are loaded with pitfalls. In this era, developing advanced formulations to cope with challenges is crucial. However, many researchers are working to compensate for the complexity of solid tumor malignancies.31 Early diagnosis is crucial to increasing the probability and ease of treatment. The development of technology has brought new advances in diagnostic approaches. For instance, liquid biopsies are a widely accepted technique for diagnosis. It incorporates cDNA, which targets genomic alteration and mutation hotspots to detect the cancerous mass.32 It was noted that genomic dissimilarities are rare in pediatric patients, which complicates the detection process.33 Other diagnostic strategies employ the use of invasive techniques, which patients and physicians do not prefer. Biopsies, a gold standard diagnostic approach, are especially susceptible to producing false-positive as well as false-negative results. They might consider low-grade fibromyxoid sarcoma as benign when it is in fact a malignant form.34 In comparison, benign lesions such as fibrous histiocytoma, cellular benign fibrous histiocytoma, and many more are mistaken for malignant forms of tumors.34,35 Radiation diagnostics such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) scans are involved in the diagnosis. MRI is widely used but is not preferred for detecting retroperitoneal sarcoma.36 All these hurdles demand the development of novel approaches to attain better diagnostic characteristics.
Even after a successful diagnosis, treating cancer is a significant obstacle. Resection and other surgical interventions are standard methodologies for treating solid tumors. However, it was noted that in the resection of neuroblastoma the chances of complications such as infiltration of the growth pattern are observed, reducing its usage as a therapeutic measure.37 USFDA has approved “rituximab” as an effective antineuroblastoma agent; many others are under clinical supervision. Although selective and compelling, add-on studies are required to claim patient selection for any specific immune-based therapy.38 Another widely used method is central venous catheters (CVCs), especially in pediatric patients. The probability of consequences could be as high as 40%.39 Problems can also occur during the operation, such as life-threatening arrhythmia, thoracic duct damage, nerve damage, arterial puncture, and even fatality.40 Hyperthermic intraperitoneal chemotherapy (HIPEC) and combination therapy of HIPEC and cytoreductive studies are widely studied in many clinical trials, especially for treating solid tumors in ovarian cancer. A study concluded that more than 95% of patients (n = 245) were observed to have at least a single adverse effect after 6 weeks of chemotherapy. It was also observed that patients with only surgery or surgery along with HIPEC had an adverse diagnosis of grade 3 or grade 4 by 25% and 27%, respectively.41
Functional Material Platforms in Cancer Theranostics
The enormous hurdles in the management of solid tumors, in the fields of both diagnosis and treatment, demand an innovative approach to dealing with the disease. Nanotheranostics research is an emerging area that ensures effective diagnosis and targeted therapy of the moiety. It promises a minimum adverse reaction and maximum efficacy of the formulation. The primary building blocks of nanotheranostics are NPs, which include aptamers, DNA nanostructures, metallic nanoparticles (MNPs) such as gold and silver, dendrimers and copolymer-based or lipid-based NPs, magnetic NPs, iron oxide NPs, mesoporous silica NPs, or quantum dot NPs. NPs have unique attributes, including a high surface-area-to-volume ratio and quantum confinement, allowing for successful modulation in various fields.42 The following section comprehensively reviews key material platforms used to synthesize nanoparticles for theranostic applications.
Lipid-Based Nanoparticles
Lipid-based nanoparticles involve liposomes, solid–lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), etc.43,44 Liposomes, composed mainly of biocompatible and biodegradable phospholipids organized in a bilayer structure, are extensively studied nanoparticle drug delivery systems capable of encapsulating both hydrophobic and hydrophilic drugs.45 Addition of cholesterol to their formulations improves the stability and enhances the permeability of hydrophobic drugs through the bilayer membrane, resulting in different liposome types including multilaminar vesicles (MLVs), large unilamellar vesicles (LUVs), and small unilamellar vesicles (SUVs) with sizes ranging from 0.5 to 100 nm.46 SLNs are a new colloidal drug delivery system composed of physiological lipids that remain solid at both room and body temperature, with particles ranging in size from 50 to 1000 nm. Solid lipids, including mono-, di-, or triglycerides, fatty acids, and complex glyceride mixtures, form a matrix material for drug encapsulation, stabilized by surfactants or polymers. SLNs provide significant advantages, including site-specific targeting, long-term physical stability, controlled release of both lipophilic and hydrophilic drugs, labile drug protection, low cost, ease of preparation, and low toxicity effects on human granulocytes.47 However, SLNs have some disadvantages, such as moderate drug-loading capacity and drug expulsion due to crystallization under storage conditions.48 NLCs, a second generation of lipid-based nanocarriers, are a combination of solid and liquid lipids, developed to overcome SLN limitations. They have higher drug loading capacity and avoid drug expulsion during storage by preventing lipid crystallization. NLCs are composed of glyceryl tricaprylate, ethyl oleate, isopropyl myristate, and glyceryl dioleate, have particle sizes similar to SLNs, can be surface-modified and targeted, and offer controlled drug release. However, they also have disadvantages such as drug expulsion after polymorphic transition and low loading capacity.49
Soft Molecule Polymeric Nanoparticles
By combining various functional units with soluble macromolecules using self-assembling copolymers, polymeric NPs can be produced. In the synthesis of polymeric NPs, conventional natural polymers like chitosan, gelatin, albumin, sodium alginate, and poly(lactic-co-glycolic acid) (PLGA), as well as synthetic polymers like poly(lactic acid), poly glutamic acid, polyglycolide, polyaspartic acid, and polyanhydride, are frequently used.49 Practical methods are needed to reduce immunogenicity and antigenicity and to lengthen the residence period and stability inside the biological system for polymeric NPs. Therefore, polyethylene glycol (PEG) is added to nanocarriers to shield the polymeric nanocarrier from steric hindrance and renal clearance. Additionally, physiochemical characteristics like crystallinity, molecular weight, hydrophobicity, and polydispersity index control how quickly the polymeric NPs dissolve and transport drugs.50 Polymeric NPs are uniquely modified to produce hydrophobic environments to encapsulate hydrophobic medications to the designated target.51 Nanocapsules, nanospheres, polymeric micelles, drug–polymer conjugates, dendrimers, polymersomes, and polyplexes are examples of polymeric NPs.52
Dendrimers have demonstrated great promise as nanocarriers for the delivery of tumor-specific drugs. Dendrimers have a specific architecture and composition, are highly branching, and have a monodispersed weight distribution.53 Substantial positive charges on dendrimers make them effective transfecting agents, and functional groups on their surfaces enable them to be functionalized with antibodies, peptides, folate, and other targeted compounds.54 Dendrimers have limitations, including that dendrimers can interact with proteins, organelles, and membranes of nanoscale cells. The lipid bilayer may interact with dendrimers with cationic surface groups, increasing permeability while reducing the integrity.55,56
Spheroid nanoplatforms with a hydrophilic shell and a hydrophobic core are known as polymeric micelles. They are more drawn to disease therapies due to their high payload with lower dimensions, thermodynamic stability, and kinetic stability.57 When used as a three-in-one nanocarrier system in cancer therapy, PEG-poly(lactic acid) micelles can transport hydrophobic medicines, including paclitaxel 17-allyamino-17-demethoxygeldanamycin and rapamycin. In addition, they can be used as a near-infrared (NIR) optical imaging agent due to PEG-block-polycaprolactone micelles that are entrapped with the drug carbocyanine.58 A multipurpose MRI and drug delivery agent are possible when superparamagnetic IONPs and DOX are confined within the core of polymeric micelles.
Drug–polymer conjugates are made by covalent bonding through various chemical methods based on the functional groups of the drug and polymeric carriers involved. The two primary forms of conjugates are protein and drug conjugates with suitable polymers.59N-(2-Hydroxypropyl) methacrylamide (HPMA) is the most effective polymer for theranostic drug–polymer conjugates. HPMA-based conjugates are favored in theranostics because they are stable, nontoxic, and biocompatible for in vivo use.60,61 Chemical conjugation and copolymerization are the standard ways of functionalizing HPMA copolymers with diagnostic and therapeutic agents.
Lipid-based nanoparticles involve liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), etc.43 Liposomes, composed mainly of biocompatible and biodegradable phospholipids organized in a bilayer structure, are extensively studied nanoparticle drug delivery systems capable of encapsulating both hydrophobic and hydrophilic drugs. Addition of cholesterol to their formulations improves stability and enhances permeability of hydrophobic drugs through the bilayer membrane, resulting in different liposome types including multilaminar vesicles (MLVs), large unilamellar vesicles (LUVs), and small unilamellar vesicles (SUVs) with sizes ranging from 0.5 to 100 nm. SLNs are a new colloidal drug delivery system composed of physiological lipids that remain solid at both room and body temperature, with particles ranging in size from 50 to 1000 nm. Solid lipids, including mono-, di-, or triglycerides, fatty acids, and complex glyceride mixtures, form a matrix material for drug encapsulation, stabilized by surfactants or polymers. SLNs provide significant advantages, including site-specific targeting, long-term physical stability, controlled release of both lipophilic and hydrophilic drugs, labile drug protection, low cost, ease of preparation, and low toxicity effects on human granulocytes.47 However, SLNs have some disadvantages, such as moderate drug-loading capacity and drug expulsion due to crystallization under storage conditions.48 NLCs, a second generation of lipid-based nanocarriers, are a combination of solid and liquid lipids, developed to overcome SLN limitations. They have higher drug loading capacity and avoid drug expulsion during storage by preventing lipid crystallization. NLCs are composed of glyceryl tricaprylate, ethyl oleate, isopropyl myristate, and glyceryl dioleate, have particle sizes similar to SLNs, can be surface-modified and targeted, and offer controlled drug release. However, they also have disadvantages such as drug expulsion after polymorphic transition and low loading capacity.49
Metallic Nanoparticles
MNPs feature an inorganic metal or metal oxide center typically encased in an organic or inorganic substance or metal oxide shell.62 Gold nanoparticles (AuNPs) (Figure 3), silver nanoparticles (AgNPs), and Fe2O3NPs have been used as contrast agents in imaging techniques and as carriers for drug delivery.63 The biocompatibility, stability, and high absorption and scattering of light of AuNPs, the antimicrobial properties of AgNPs, and the magnetic moment of Fe2O3NPs have made them ideal for nanotheranostics.7 Further research is needed to optimize their use in nanodiagnostics and nanotherapy.
Figure 3.
(a–c) Tumor regression in dogs and cats in different organs using Aurolase therapy, a type of plasmonic photothermal therapy using a silica-gold nanoshell. (a, b) Permeability MRI images of a canine brain showing enhancement of a bilobed tumor before and after treatment. (c) Tumor regression curves in mammary glands of 13 cats and dogs following treatment using gold nanorods. Adapted with permission from ref (64). Copyright (2019) American Chemical Society.
AuNPs have been widely studied for their use in nanotheranostics due to their biocompatibility, stability, and high absorption and scattering of light.65 AuNPs have been the focus of significant research in nanotheranostics to treat solid tumors.66 AuNPs possess exceptional physical and chemical traits due to their varying shapes and dimensions. The core of AuNPs, made of gold, is primarily inert and nonharmful to living things. Additionally, producing AuNPs is a straightforward process, and the particles’ size can be controlled within a specific range, typically between 1 and 150 nm.67 Finally, AuNPs can serve as efficient drug delivery systems as their various features and sizes allow for drug-controlled release in specific areas.68 AuNPs are potential drug delivery agents due to their unique physical and chemical properties.69 They can increase the pharmacokinetics of drugs, reducing side effects and allowing for targeted delivery of higher doses. AuNPs have been used to deliver small molecules and large biomolecules such as proteins, DNA, and RNA. However, the size, charge, and surface chemistry of AuNPs must be considered to create an effective delivery system.14 Research has shown that AuNPs can be highly targeted in cancer cells and that the size of the AuNPs affects their uptake and intracellular fate.70 Studies have also shown that AuNPs linked with drugs can be rapidly and efficiently concentrated in tumor cells. AuNPs can also cause specific photothermal damage to tumor cells when combined with near-infrared rays.
AgNPs also have antimicrobial properties and have been used in wound healing and treating infections.71 AgNPs have been used as contrast agents in imaging techniques such as CT and photoacoustic imaging and as carriers for drug delivery.72 Fe2O3NPs have a high magnetic moment and have been used as contrast agents in MRI. Fe2O3NPs have also been used for magnetic hyperthermia. The magnetic properties of Fe2O3NPs are utilized to generate heat when subjected to an alternating magnetic field, leading to the destruction of cancer cells.73 Refer to Figure 4 for a discussion of AgNPs as a potential anticancer agent.
Figure 4.
1. Different shapes of AgNPs produced from various Bacillus species. (A) Spherical shape, (B) mixed shaped, (C) heavily branched, (D) flower-shaped AgNPs. 2. Various characterization techniques employed for AgNPs. (A) X-ray diffraction spectra. (B) Fourier transform infrared spectra. (C) Determination of size by dynamic light scattering. (D) SEM image. (E) TEM image. 3. Graph illustrating the effect of AgNPs on VEGF induced. (A) Describes bovine retinal endothelial cells (BRECs) and (B) MDA-MB 231. The assay was performed after the exposure to AgNPs for 24 h. 4. Induction of accumulation of autophagolysosomals due to AgNPs in a human ovarian cancer cell. All the images are adopted under CCBY4 from ref (74). Copyright (2016) MDPI.
MNPs have several general properties that make them advantageous for theranostics, such as nanometric size, improved permeability retention, high surface area for molecular therapeutic binding, and surface functionalization with cancer-homing ligands for cancer treatments.75 Moreover, due to their inherent biocompatibility, affordability, and unique magnetic properties under external magnetic fields,76 MNPs represent a significant category of NPs in the current theranostic research.77 The magnetic characteristics of MNPs typically include ferromagnetism and superparamagnetism.78,79 Theranostics is currently receiving a lot of interest from MNPs such as gadolinium, nickel, manganese, and iron oxide-based nanoformulations.80,81 Most nanoformulations used in theranostic applications are neutralized because charged NPs can connect to cells in an unintended manner, while neutral MNPs can lengthen blood vessel circulation times.79 MRI positron emission tomography and single-photon emission computed tomography frequently use surface-functionalized MNPs as contrast agents.82,83 MNPs are also often employed to generate heat at the targeted cells. A well-researched method for tumor-targeted drug delivery is magnetoreception or gene transfection utilizing MNPs. Magnetofection can be used effectively in target drug delivery.
Gold–Silica Hybrids
Uncoated gold nanorods may aggregate in solutions and melt when exposed to laser light, both of which significantly alter their optical characteristics.84 However, they can withstand aggregation and shape change under a variety of circumstances when their surface is suitably treated or chemically modified using silica, thereby preserving their optical characteristics.85 Studies by Mitichei et al. showed that a tightly bound silica shell surrounding gold nanorods effectively prevents the production of a hydroxyl radical and singlet oxygen. Furthermore, numerical simulations that account for the application of short pulses of laser light demonstrate that the plasmonic field improvement at the nanoparticle area is reduced after the silica layer is added, rendering them ideal for a variety of biological advancements86 (refer to Figure 5).
Figure 5.
(a–h) Gold nanosesame beads (GNSbs). (a) Basic morphology of GNSbs. (b),(e) Images obtained from TEM of mesoporous silica nanobeads. (d) TEM of GNSbs. (c, f) TEM of gold-seed-filled porous silica nanobeads. (h) Describes the particle size distribution of GNSbs. (e, f, g) AuNPs in scale of 50 nm and (b, c, d) in the scale of 100 nm. Adopted under CCBY4 from ref (87). Copyright (2021), MDPI.
Also, studies conducted by Mueller et al. demonstrated hydrophobically modified, silica-coated gold nanorods as a versatile theranostic agent. The studies also showed that when contrasted with passive drug release in the absence of ultrasound, ultrasound-mediated circumstances resulted in a 2-fold higher release of nanomedicines.88 He et al. reported a high-performance combination treatment for ablating cancer cells that combined photothermal therapy with chemotherapy to increase therapeutic effectiveness using silica-encapsulated gold nanorods.89 Numerous photoresponsive applications are possible using gold nanorods, such as photothermal therapy, chemotherapy, imaging, and cancer treatment.
Gold Nanoparticles
Since all the catalytic, magnetic, and optical properties of gold nanoparticles are influenced by their size and shape, a lot of attention has recently been paid to controlling the shape and size of gold nanoparticles. Also, due to their compatibility, conjugation with biomolecules, and adjustable optical characteristics that are caused by the shape and size of the gold nanoparticles, they play a significant role in biological sciences.90 Additionally, gold nanoparticles display a variety of shapes, including spherical, suboctahedral, decahedral, icosahedral multiple-twined, tetrahedral, nanotriangles, hexagonal (platelets), and nanorods. In contrast to spherical nanoparticles, triangular gold nanoparticles exhibit desirable optical characteristics.91
Metallic nanoparticles have intrigued scientists for more than a century, and they are now widely used in engineering and the biological sciences.92,93 The remarkable antibacterial characteristics of silver nanoparticles against harmful viruses, bacteria, and other nucleus-containing pathogens have been shown to make them particularly helpful.94 The scientific community also believes that these metallic nanoparticles are harmless when used for gene and medication delivery. Additionally, metallic nanoparticles can simultaneously provide therapeutic and diagnostic options.95
Quantum Dots
Quantum dots (QDs) are nanoscale semiconductor particles with unique optical and electronic properties. They have gained attention recently due to their potential applications in various fields, including nanomedicine.96 In particular, QDs have shown promise as a platform for nanotheranostics in solid tumors. QDs have been utilized as nanotheranostics due to their unique properties, such as high photostability, large absorption cross-section, and size-tunable fluorescence emission. This makes them suitable for imaging and therapeutic purposes.97,98 To date, various types of QDs from groups II–VI such as Zn(S, Se), Cd(S, Se, Te), IV–VI Pb(S, Se), I–VI Ag2(S, Se), II–V Cd3(P, As)2, and III–V In(P, As) as well as ternary I–III–VI QDs (where I = Cu or Ag, III = Ga or In, VI = S or Se) have been successfully utilized in biomedical fields.99,100 QDs comprise a fluorescent core surrounded by a crystal shell that protects the center from ionization within biological systems.98 Their exceptional optical properties make them ideal for biomedical applications. Their narrow and symmetrical emission profiles provide color purity and accurate emission stability. Their broad excitation range and high molar absorption coefficients allow for high-throughput detection. Moreover, their high photoluminescence (PL), quantum yield (QY), and resistance to photobleaching offer the potential for long-term monitoring of biological processes. Additionally, their relatively long PL lifetimes enable the reduction of autofluorescence.101 As a result, QDs have been proposed as versatile contrast imaging agents that can be applied to a range of imaging modalities, including infrared fluorescence, positron emission tomography, CT, MRI, and PA imaging.81,101 QDs can be engineered with various biological molecules, such as antibodies, peptides, and aptamers, which improve their biocompatibility for targeted drug delivery.102
Wang et al.103 showed that graphene QDs conjugated with folic acid (FA) could be used for antitumor drug delivery. Their biocompatibility, optical properties, high surface-to-volume ratio, and carboxylic groups for conjugation with anchoring molecules make them suitable for targeted drug delivery and real-time monitoring. QDs can also be used as carriers for siRNA (short, double-stranded, small interfering RNAs) to induce RNA interference and inhibit protein translation. They can be photostable beacons for monitoring siRNA delivery.104 QDs’ therapeutic efficacy has led to their application in photothermal (PTT) and photodynamic (PDT) therapy.74 PTT requires NIR-absorbing platforms that induce hyperthermia at the target site and cause cellular damage, while PDT requires photosensitizers to generate reactive oxygen species (ROS) to destroy cancer tissues. However, these applications may have limitations with other NPs and require further study. QDs such as Cu2(OH)PO4 have been identified as promising agents to overcome these limitations and enhance disease treatment.105 Tungsten sulfide QDs have also shown promise for synergistic PTT and radiotherapy with dual-modal imaging. Carbon QDs develop into an intelligent theranostic nanomaterial for detecting and treating cancer. Yang-Wang et al. synthesized a biofriendly trichrome-tryptophan-sorbitol carbon QD from natural tryptophan via the one-pot hydrothermal method that shows stronger green fluorescence in hepatocellular carcinoma (HCC), generates reactive oxygen species leading to autophagy of HCC cells, and performs significant tumor inhibition by inducing autophagy through a p53-AMPK pathway in vitro and in vivo with minimal systemic toxicity.106 However, toxicological effects of QDs, especially those based on heavy metals, have been reported, so further study is needed before clinical application. Refer to Figure 6 for an understanding of the application of various techniques in the management of head and neck cancer.
Figure 6.
Management of head and neck cancer. (A) Imaging detection of head and neck cancers. (B) The diagnosis of HNC often utilizes clinical manifestations: imaging examinations such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)-CT, and histological examinations such as biopsy and lymph node puncture. The main treatments for early HNC include surgery, radiotherapy, chemotherapy, immunotherapy, gene therapy, photodynamic therapy (PDT), and photothermal therapy (PTT). (C) The main components of NM-based drug delivery systems include a nanocarrier, targeting moiety (e.g., aptamers, receptor-specific peptides, or monoclonal antibodies), and cargo (the desired chemotherapeutic drugs). Adopted under CCBY4.0 from ref (107). Copyright (2023) Elsevier B.V.
Aptamers are single-stranded RNA or DNA molecules that can bind specifically to target molecules, such as proteins or small molecules, through their specific 3D structures.108 They have been used in nanotheranostics, which can act as molecular targeting agents for delivering diagnostic and therapeutic agents to specific cells or tissues.109 Aptamers can be conjugated to NPs, such as QDs or liposomes, and direct them to specific cellular targets. This can enhance the specificity and efficiency of disease diagnosis and treatment. Moreover, aptamers can also be used as therapeutic agents themselves through their ability to modulate the activity of target molecules or to trigger specific cellular responses.110,111 Using aptamers in nanotheranostics holds great promise for developing new and effective treatments for various diseases.
Carbon Quantum Dots
Carbon-based quantum dots, otherwise known as carbon dots (CDs) or C-dots, were first discovered in 2004 from the purification of single-walled carbon nanotubes and have been since made using laser ablation and hydrothermal methods. CDs are quasi-0D multicolor photoluminescent carbon nanomaterials possessing high quantum yield, good biocompatibility, excellent stability, strong absorption, and small sizes. These intrinsic properties of carbon dots are attractive candidates for important applications such as nanomedicine, catalysis, energy storage, and optoelectronics.112 By combining 13C labeling and whole-body imaging, Yang et al. were the first to examine the biodistribution pattern of carbon dots in 2009. The mice’s C-dot biodistribution and translocation were completed. It was discovered that carbon dots can easily spread throughout the entire body but are unable to penetrate the blood–brain barrier (BBB). Moderate buildup was seen in some organs, including the spleen, liver, and kidney.113 Additionally, by labeling the carbon dots with 125I, Tao et al.114 carried out a toxicity and biodistribution investigation. A two-compartment model was used to conduct a pharmacokinetic investigation of carbon dots. C-dots had a 0.1 h distribution half-life and a 2.1 h clearance half-life. With the exception of the brain, there was a moderate buildup of carbon dots in the spleen, liver, and kidney, which was consistent with Yang et al.
Sun et al. conducted in vitro and in vivo studies on carbon dots, examining their impact on MCF-7 cells (human breast cells) and HT-29 cells (human colorectal adenocarcinoma). They employed Trypan Blue and MTT assays to evaluate viability, proliferation, and cell mortality after exposing the cells to carbon dots. The carbon dots were synthesized using PEG1500N laser ablation and surface passivation techniques. Results demonstrated that these nanoscale carbon particles exhibited robust photoluminescence in solution and the solid state, even with simple surface passivation. The emitted light from the carbon dots remained stable without blinking or photobleaching. The researchers concluded that these highly emissive carbon dots could have applications comparable to or surpassing those of extensively studied silicon counterparts.115
In theranostic applications, NIR carbon dots have been used to photothermally image and ablate H22 tumors generated from the subcutaneous injection of H22 hepatoma ascites.116 Internalized CDs in the tumors were irradiated with a 655 nm laser, raising internal temperatures to over 65 °C and causing significant tumor volume reduction following treatment (Figure 7). To increase tumor uptake, carbon dots have been synthesized to mimic amino acids to facilitate the specific uptake of nanoparticles into tumors and cancer cells via specific carrier transporters such as LAT1. Here, carbon dots enabled the imaging and delivery of therapeutics to brain tumors with high specificity and efficiency in a U87-tumor-bearing mouse. Theranostic carbon dots have also been engineered to produce NIR-II emission for deep in vivo imaging and photothermal therapy. These carbon dots are a new type of NIR-II CD-based probe synthesized from watermelon juice as the carbon source and are small enough to be physiologically cleared renally.117 Aside from photothermal treatments, carbon dots may also be conjugated with folic acid and combined with chloroquine or docetaxel to deliver therapeutics.118 CDs have also been functionalized with dendrimers and complexed to plasmid DNA to deliver genetic material.119 In summary, CDs are an exceptional alternative to conventional bioimaging probes such as quantum dots, which suffer from toxicity issues. Their outstanding optical properties combined with their excellent biocompatibility and simple, low-cost synthesis make carbon dots suitable candidates as next-generation bioimaging fluorescent probes.
Figure 7.
(a–d) Photothermal therapy of CDs following intravenous delivery. (a) IR thermal images of mice with CDs injected and irradiated at 10, 60, 120, 180, 240, and 300 s at the tumor region by a 655 nm laser. (b) Mouse tumor temperature as a function of irradiation duration. (c) Photographs of tumor growth. (d) Tumor growth curves following treatment. Adapted under CCBY4 from ref (120). Copyright (2018) Light: Science & Applications license.
Nanoparticle Strategies in Theranostics
The development of nanosensor and nanomedicine technologies in recent years has paved the way for promising ways to use nanotheranostics in cancer treatment. The transport and effectiveness of biological and conventional treatments can be improved by conjugating nanotheranostics agents of various types, such as gold, silver, and magnetic NPs, along with nanoshells and nanocages. This nanotheranostics strategy is based on controlling NPs (1–200 nm) by taking advantage of certain unique qualities, including large surface area, optical and magnetic characteristics, low melting point, and mechanical strength.121 They are now frequently utilized for targeted drug administration, aptamer delivery, and diagnostic imaging of various disease stages by MRI, CT, PET, single photon emission tomography, photoacoustic imaging and surface-enhanced Raman spectroscopy (SERS), ultrasound, etc.121 Because of their potential as therapeutic and diagnostic tools, protein-based NPs have recently attracted much attention.122 DNA origami, a synthetic form of 3D DNA lattices, has also been employed as a theranostic agent, allowing different chemotherapeutic drugs to be segregated into the hollow areas inside the lattice. This tactic has been proposed to improve the effectiveness of controlled drug delivery and cancer biomarker identification.123 Different thrombolytic agents can be delivered through microbubbles of perfluorocarbon NPs and echogenic liposomes, along with superparamagnetic iron oxide NPs or poly(acrylic acid)-coated magnetic NPs.124
By targeting proteins unique to a particular cancer tissue type, nanotheranostics drugs can be employed as a tailored cancer treatment strategy. This is made possible by a targeted anticancer drug delivery strategy that allows for real-time tracking of the biodistribution and drug release of NPs used to inhibit solid tumors, such as magnetic, gold, silica NPs, and nanocarbon organic NPs, as well as liposomes, micelles, dendrimers, proteins, and biopolymers.125−128 Numerous biomedical applications have been made possible by nanotheranostics, including effective drug administration across the blood–brain barrier, multimodal and combinatorial therapy, siRNAs, and a combination of bioligands for specific molecular targeting.17 NPs can successfully transfer a range of targeted agents (such as peptides, aptamers, monoclonal antibodies, nucleic acids, chemotherapeutics, etc.) to malignant cells because of their surface alterations.129,130 Diverse NPs can be utilized simultaneously to visualize tumor development using MRI, fluorescence, or other optical techniques. So, using a nanotheranostics technique, the prognosis of various cancer types can be identified and tracked, along with targeted and site-specific tumor cell obliteration. In this section, we outline nanoparticle design strategies associated with imaging and the therapeutic treatment of solid tumors. We review imaging modalities such as MRI, fluorescence, and PET; therapeutic strategies such as drug nanoencapsulation and photodynamic therapy; and targeting strategies such as employing biomimetic materials to increase tumor uptake efficiency.
Magnetotheranostics
MNPs have attracted much attention from cancer nanotheranostics in recent years due to their numerous applications in MRI and multimodal imaging, efficient delivery of both gene and conventional chemotherapies, and the hyperthermal killing of cancer cells.131 MNPs are smaller (∼100 nm) than traditional theranostic agents, allowing quicker delivery and increased tissue penetration.132 MNPs, particularly iron oxide NPs, have high surface area-to-volume ratios that allow for a wide range of pre- and postsynthesis modifications, including chemotherapeutic drugs and targeting moieties.133 To detect cancer cells in soft tissue, modified MNPs can be utilized as contrast agents in MRI scans. Unlike MNPs that have not been modified, modifications can also be made to lessen their cytotoxicity.134 To improve their activity, surface changes with 3-(2-aminoethyl amino) propyl trimethoxysilane and further conjugation with polyethylenimine-FA are surface treatments with MNPs. These treatments enhance the specificity of cancer cells for efficient therapy.134 Targeted drug delivery, slowing the growth of tumors, and employing MRI contrast imaging to track MNP accumulation in tumor tissue are the main ways that MNPs are utilized to treat glioblastoma.135
Sahu et al. employed a PEGylated Tb3+ coating on IONPs combined with Ce3+-sensitized gadolinium phosphate nanorice to increase the multifunctionality of IONPs.136 This multifunctional nanorice became a successful drug delivery system for DOX due to its mesoporous structure and abundance of negatively charged functional groups on the surface. Using a confocal laser scanning microscope, the nanorice produces a green light that enables tracking and monitoring its cellular uptake and accumulation. Using the MCF-7 and HeLa cell lines, the impact of these modified IONPs loaded with DOX was examined in vitro. The DOX-loaded IONPs appear to hold promise for future improvements in the treatment efficacy of these malignancies.136
For effective drug delivery, therapy shown in 4T1 tumor-bearing female balb/c mice, and trimodal image-guided monitoring in the presence of NIR/X-ray, preadsorbed IONPs on PEGylated WS2 nanosheets coated with DOX-loaded mesoporous silica (WS2-IO@MS-PEG) can be used.137 In addition, PTT is a noninvasive therapeutic strategy with many advantages, including increased selectivity, decreased systemic toxicity, and remote controllability.138 Yu et al. developed MoS2/Fe3O4 nanotheranostics for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging MoS2 that transformed NIR light into heat, and Fe3O4NPs served as the target moiety that was directed by an external magnetic field to the tumor site.139 The MoS2/Fe3O4 composite (MSIOs) functionalized with biocompatible PEG was created using a straightforward two-step hydrothermal process. Additionally, the obtained MSIOs show good biofluid stability and minimal toxicity in vitro and in vivo. Due to their superparamagnetic characteristic and complete NIR absorption, the MSIOs can be used as a dual-modal probe for T2-weighted MR and photoacoustic tomography imaging. In addition, we show that magnetically focused photothermal ablation of cancer is successful. In addition, this showed that magnetically focused photothermal ablation of cancer is successful. These findings point to the potential of the multifunctional MSIOs for cancer theranostics and demonstrate the potential for localized photothermal ablation of cancer that is spatially driven by the magnetic field.
MoS2–iron oxide (MoS2–IO) nanocomposites can be further modified and used as a PET theranostic agent by surface absorbtion of the positron-emitting radioisotope 64Cu. This configuration enables the imaging of tumor growth and metastasis by producing a potent in vivo system capable of photothermal ablation (MoS2), magnetically guided delivery (IONPs), and 3D imaging of the body/physiological processes (64Cu). In PTT, MoS2–IO-(d)PEG, which are MoS2–IO nanocomposites modified with double PEGylation, have demonstrated potential for tumor ablation in 4T1 (murine breast cancer) cells. When mice tumors were injected with MoS2–IO-(d)PEG and subjected to NIR laser, the surface temperature increased by roughly 51 °C in 5 min; however, when MoS2–IO-(d) PEG was not present, the temperature increased by only 5 °C.139
By incorporating MRI contrast agents into polymeric nanoparticles, it becomes possible to enhance the visibility of tumors in MRI scans. These contrast agents can be encapsulated within or attached to the surface of polymeric nanoparticles. One example of a copolymer used for this purpose is PLA-TPGS (poly(lactic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate). It becomes a multimodal imaging approach by combining PLA-TPGS with MRI contrast agents and fluorescent contrast agents. The addition of fluorescent contrast agents allows for visualization using fluorescence imaging techniques in addition to MRI. Furthermore, a specific contrast dye called Cy5.5 can be conjugated with iron nanoparticles, creating a complex that combines the fluorescent properties of Cy5.5 with the MRI contrast capabilities of iron nanoparticles. The resulting complex enables tumor imaging using both MRI and fluorescence techniques.140 In addition, dendrimers serve as another type of delivery agent characterized by their highly branched spherical structure. A research study demonstrated a specific dendrimer as a theranostic delivery system capable of carrying both an MRI contrast diagnostic agent called Cy5.5 and the anticancer drug paclitaxel. This dendrimer exhibited high cellular uptake; i.e., it was effectively taken up by the target cells. Moreover, it displayed reduced adverse effects on nontarget organs, minimizing potential harm to healthy tissues due to the dendrimer’s design and properties.141
Plasmonic Theranostics
NPs made of silver and gold have enormous potential as theranostic agents. They have the benefits of simplicity in synthesis, bioconjugation, and surface changes that make AuNPs more biocompatible and less cytotoxic.142 With the same multimodal imaging capabilities and application flexibility as MNPs, AuNPs provide a greater range of therapeutic and diagnostic utility for treating cancer.132 SERS nanoantennas can be conjugated with the FDA-approved antibody cetuximab, inhibiting cancer via epidermal growth factor receptor deactivation.143,144 SERS nanoantennas are created by capping AuNPs with a Raman reporter entrapped in larger polymers. Raman signals generated by the SERS nanoantenna can be recorded simultaneously to measure a tumor’s size and inhibition.144 SERS nanoantennas are an up-and-coming nanotheranostics agent for treating ovarian cancer and neuroblastoma due to their greater payloads than lipofection, effective cellular absorption, low toxicity, quick endosomal escape, and increased half-lives145 (refer to Figure 8).
Figure 8.
Plasmonic nanoparticle. It consists of plasmonic metals, semiconductors (metal and nonmetal), dielectric material, and other transition metals. It is available in various shapes such as nanospheres, nanocubes, nanoplates, nanoshells, nanorods, and dimers. It is enriched with various properties such as EM-field enhancement, plasmon energy transfer, meal-enhanced fluorescence, Fano resonance, plasmonic chirality, etc. It is vividly used in theranostic approaches, various photocatalyses, plasmonic thermometers, photothermal, and many more fields. Adopted under permission from ref (146). Copyright (2019) American Chemical Society.
Gold nanoclusters (AuNCs) are yet another exciting class of theranostic agents due to their characteristics including minimal photobleaching, little cytotoxicity, and improved Stokes-shifted emission.147 Red, green, and blue fluorescences that can be used for imaging are released by fluorescent AuNCs coupled with chitosan biopolymers, and these fluorescences are identified by taking UV–vis spectra. The therapeutic substances can be delivered to the target tissue via these NPs. For instance, using the prodrug 5-fluorocytosine (5-FC), which is transformed into the pro-apoptotic toxin 5-fluorouracil (5-FU) by the activity of the cytosine deaminase-uracil phosphoribosyltransferase (CD-UPRT) enzyme, AuNCs loaded with the suicide gene CD-UPRT can kill HeLa cells.147
A gold–silver nanoshell (Ag/AuNS) can be modified with glucose oxidase to selectively target, screen for, and destroy cancer cells in early stage malignancies.148 Additionally demonstrated to be effective site-specific theranostic agents were gold-core gold-shell (Au@Au) or gold-core silver-shell (Au@Ag) NPs coupled with activatable aptamer probes (AAPs; carrying a fluorophore). As shown in A549 cells, such Au@Ag/Au-AAP nanoassemblies can be used for PTT guided by high-contrast imaging systems.149 As anticancer theranostic drugs, biosynthesized (bAgNPs) are also helpful. For example, Olax scandens leaf extract and AgNO3 combine to create b-AgNPs, which fluoresce brilliant red inside cells and could potentially be used as an imaging diagnostic tool. Significant anticancer activities in human breast cancer, murine melanoma, and lung cancer have been shown by these NPs.150
Natarajan et al. developed a unique cancer-targeting assembly comprising AuNPs with quantum dots, miR-491, and mAb-ChL6 connected through streptavidin/biotin to effectively transfect cancer cells and cause death in specific cancer cells for imaging and targeted therapy.151 This study evaluated the capacity to target and induce apoptosis using confocal and electron microscopy. The study findings showed that miR-491 specifically caused apoptosis in breast cancer cells compared to healthy breast cells. Over 72 h, miR-491’s ability to induce apoptosis was increased. Compared to untreated breast cancer cells, AuNP-coupled miR-491 displayed higher apoptotic effect (>80%) and transfection efficiency. An inductively coupled plasma mass spectrometer was used to estimate the microRNA transfected into the cancer cells. The imaging and treatment of breast cancer could benefit from this unique nanogene molecular assembly. The mAb-GNP-miR491-Qdot construct successfully transfected into the HBT3477 cells and caused apoptosis. This research work may also influence the development of clinical therapies for prevalent cancer forms.151
In another study, Zhu et al. developed multifunctional dendrimer-entrapped gold nanoparticles (Au DENPs) covalently coupled with alpha-tocopheryl succinate (α-TOS) for use in the theranostic treatment of certain cancers.152 In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were conjugated with fluorescein isothiocyanate, PEG-modified α-TOS, and PEGylated FA and used as templates to create Au DENPs. The remaining dendrimer terminal amines were then acetylated. Different methods were used to characterize the developed multifunctional Au DENPs. The authors demonstrated the water dispersibility and stability of the Au DENPs, which have a Au core size of 3.3 nm and 9.8 α-TOS molecules per dendrimer and are stable at various pH and temperature levels as well as in different aqueous media. The FA modification on the Au DENPs allows excellent targeted CT imaging of the cancer cells in vitro and the xenografted tumor model in vivo. It also provides for efficiently targeting the particles of cancer cells overexpressing FA receptors (FAR). The therapeutic activity is unaffected by α-TOS covalent conjugation and substantially increased water solubility. Notably, the produced multifunctional Au DENPs can impart the precise therapeutic efficacy of α-TOS to the FAR-overexpressing cancer cells in vitro and the xenografted tumor model in vivo due to the function of FA-directed targeting. The created multifunctional Au DENPs have the potential to be innovative theranostic nanoplatforms for targeted CT imaging and cancer therapy.152
Gold nanoparticles have garnered significant attention in scientific research due to their extraordinary plasmonic characteristics and the advantageous ratio between their surface area and volume. These properties have prompted extensive exploration of their potential utility in detecting biomarkers. Biomarker molecules or substances in elevated amounts in the blood, serum, or specific cancerous regions play a crucial role in aiding diagnosis. However, detecting specific biomarkers in extremely low concentrations presents a formidable challenge, necessitating the development of highly sensitive detection strategies.153 Photoacoustic imaging (PAI) is an imaging technique that offers noninvasive real-time information by converting absorbed short-pulsed laser energy into ultrasound signals through the thermoelastic effect. These ultrasound waves are captured by transducers placed on the tissue surface, which convert the mechanical waves into electrical signals. After appropriate processing, an image is formed, representing the distribution of absorbed optical energy. Unlike ultrasound imaging, PAI overcomes the limitations associated with the mechanical properties of biological tissues and provides enhanced tissue contrast based on the optical properties of different tissues. Gold nanoparticles (AuNPs) are particularly advantageous in PAI due to their high molar extinction coefficient, which enables maximum light absorption. They also offer optimal tissue penetration, minimizing interference from intrinsic chromophores, and are not susceptible to photobleaching. In PAI, AuNPs can serve as exogenous contrast agents for detecting various tumors by monitoring functionalized receptors’ passive or active accumulation. They can also be utilized for intravascular PA imaging of macrophages in atherosclerotic plaques. Moreover, PAI using gold nanoparticles as contrast agents enables the tracking of stem cells. GNPs can be efficiently loaded into stem cells and are not significantly exocytosed. A contrast agent system composed of inert gold nanorods bound with a ROS-sensitive near-infrared dye (IR775c) allows for real-time tracking of cell viability with the high spatial and temporal resolution, facilitating the assessment of the efficacy and contribution of cell therapies.
Hybrid Nanotheranostics
Silica nanoparticles (SiNPs) have unique features that make them valuable as nanotheranostic agents, including biodegradability, biocompatibility, wide surface area and pore volume, and thermal and chemical stability (Figure 9). The main benefit of SiNPs as a theranostic platform comes from their porosity. By managing the porosity, various theranostic cargos can be delivered to multiple cancer cell types in a controlled, sequential, and multifunctional manner.132 For instance, porous SiNPs coupled with Alexa Fluor-488, iRGD peptide, and dibenzocyclooctyl can be utilized as a theranostic agent.154 As a nanotheranostic agent, docetaxel and silica nanorattles conjugated with luteinizing hormone-releasing hormone (LHRH), Pseudomonas aeruginosa exotoxin 40 (PE40), and docyanine green fusion protein can be employed (antimitotic chemotherapeutic). Following LHRH’s targeting of cancer cells, docetaxel inhibits cell proliferation, and PE40 exhibits cytotoxic action. For image-guided drug delivery and therapy for cancer, the docyanine green signal is recorded.155
Figure 9.
Monitoring of 90Y-DOTA-UPSN in a tumor model using Cerenkov luminescence imaging. (A) Mice injected with 90Y-DOTA-UPSN exhibit tumor accumulation. (B) Relative UPSN accumulation in organs less than tumor uptake. (C) Quantified radiant intensity of UPSN uptake in organs vs tumor. Reprinted (adapted) with permission from ref (156). Copyright (2021) American Chemical Society.
Europium- (Eu) and Gd-conjugated mesoporous SiNPs (MSN) have been evaluated as theranostic agents (EuGd-MSN). EuGd-MSN has been utilized in conjugation with camptothecin (CPT) (EuGd-MSN-CPT) to target cancer cells while concurrently assessing the effects of the application using MRI and fluorescence imaging.157 Qianjun He et al. developed mesoporous carbon@silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging.158 In this study, using a bottom-up self-assembly strategy in conjunction with an in situ one-step carbonization/crystallization method, a hierarchical theranostic nanostructure (CS-MSNs) was developed. This structure contains carbon and Si nanocrystals encapsulated in mesopores and within mesoporous SiNPs. In addition to having a large payload of insoluble medicines and a particular NIR-to-Vis luminescence imaging characteristic, CS-MSNs also showed a limited size distribution. The bioconjugated CS-MSNs with a PEGylated phospholipid compound and hyaluronic acid demonstrated excellent dispersivity. They could selectively target cancer cells overexpressing CD44, deliver insoluble drugs into these cells, subsequently kill them effectively, and fluorescently image them simultaneously in a novel and appealing NIR-to-Vis luminescence imaging fashion, offering a promising opportunity for cancer theranostics.158
Graphene Theranostics
A two-dimensional layer of sp2-bonded carbon known as graphene is anticipated to offer ground-breaking uses in nanotechnology.159 Nanomaterials based on graphene oxide (GO) have recently attracted much interest. Graphene-based nanotheranostics agents have several physical benefits over other nanotheranostics platforms, including a large surface area, colloidal stability, ease of surface modification and functionalization, and superior electrical and mechanical capabilities. Graphene-based nanotheranostics agents, such as graphene nanosheets, which have shown increased apoptosis in CD44+ KB carcinoma cells utilizing NIR imaging, can allow image-guided tumor ablation via synergistic PTT.160
Yang et al. demonstrated that the poly(amidoamine) dendrimer-grafted gadolinium-functionalized nanographene oxide nanoparticles (Gd-NGOs) are efficient delivery systems for chemotherapeutic drugs as well as highly specialized gene-targeting compounds like miRNAs to cancer cells.161 Epirubicin (EPI), an anticancer drug, could simultaneously bind to the positively charged Gd-NGO surface and interact with the negatively charged Let-7g miRNA. They discovered that this combination of Let-7g and EPI (Gd-NGO/Let-7g/EPI) established noticeably higher transfection efficiency than Gd-NGO/Let-7g or Gd-NGO/EPI but also produced more potent inhibition of cancer cell development. The authors used human glioblastoma (U87) cells as a model. When compared to Gd-NGO/EPI (3.4 mg/mL EPI), the concentration of Gd-NGO/Let-7g/EPI needed to inhibit cellular growth by 50% (IC50) was much lower (to the equivalent of 1.3 mg/mL EPI). Additionally, Gd-NGO/Let-7g/EPI could be employed as a contrast agent for MRI to locate and quantify drug delivery to tumor regions and determine the extent of blood–brain barrier opening. These findings indicate a potential nonviral vector for chemoembolization therapy and molecular imaging diagnosis in upcoming clinical applications.161
Taratula et al. developed a nanotheranostics system with novel low-oxygen graphene nanosheets chemically altered with polypropyleneimine dendrimers loaded with phthalocyanine (Pc) as a photosensitizer.162 Such a molecular structure prevents graphene nanosheets from dampening the Pc’s fluorescence, enabling fluorescence imaging. The developed nanoplatform was coupled with poly(ethylene glycol) to increase biocompatibility and LHRH peptide to deliver drugs precisely to tumors (Figure 10). Notably, photothermal treatment using graphene nanosheets and Pc’s ROS production utilized low-power NIR irradiation of a single wavelength. With a lethal effectiveness of 90%–95% at low Pc and low-oxygen graphene doses, combinatorial phototherapy improved the demise of ovarian cancer cells, likely giving cytotoxicity to the combined effects of produced ROS and mild hyperthermia. Pc put onto the nanoplatform has been proven effective as a NIR fluorescent agent for imaging-guided drug delivery in an animal investigation. Because of this, the developed Pc–graphene nanoplatform has excellent potential to be a successful NIR theranostic probe for imaging and combined phototherapy.162
Figure 10.
Graphene oxide nanoparticles, which on modification with the help of various agents on the surface lead to incorporation of targeted drug delivery, photodynamic drug delivery, and photothermal drug delivery. This targeted the tumor cells and helps in management of tumors. Adopted under CCBY4 from ref (163). Copyright (2020) MDPI.
Bioresponsive Theranostics
Lipid- and polymer-based nanotheranostics agents provide the widest variety of cellular compatibilities, biodegradability, quick cellular absorption, and no toxicity. Due to their diagnostic applications, stimulation generation, thermodynamic stability, targeting ability, circulating longevity, and ease of in vivo customization,164,165 lipids166,167 and polymers168−170 have been frequently used as nanocarriers. Due to their dual in vivo imaging modes, superparamagnetic MRI and fluorescence imaging in NIR, PEGylated liposomes linked with IONPs and infrared dye (l-IONP/DiR) are promising as theranostic agents.171
For targeted cancer therapy and imaging, Parhi et al. examined the imaging and diagnostic capabilities of Trastuzumab (Tmab)-functionalized lipid-based NPs loaded with rapamycin and QDs.172 Various in vitro cellular experiments were used to evaluate the therapeutic evaluation of drug-loaded NPs. In HER 2 positive SKBR 3 breast cancer cell line experiments, the results demonstrated the improved therapeutic efficacy of targeted drug-loaded NPs over native and unconjugated NPs. Additionally, molecular analysis of the therapeutic advantages of rapamycin-loaded Tmab-conjugated NPs indicated enhanced downregulation of the mTOR signaling pathway, leading to increased cell death. In a 2D monolayer and a 3D tumor spheroid model, targeted multifunctional NPs have demonstrated remarkable bioimaging capabilities. As a result, one might expect that such a multimodal nanotheranostics technique will someday prove to be a valuable tool for better cancer management.171 Besides, PEGylated liposomes linked with IONPs and l-IONP/DiR are promising as theranostic agents due to their dual in vivo imaging modes, superparamagnetic MRI, and fluorescence imaging in NIR.172 To create a PGN-l-IONP/DiR nanocomposite that prevented the growth of MDA-MB-231 (breast) tumor cells, researchers loaded l-IONP/Dir with antihuman PGN635 monoclonal antibody (specific for phosphatidylserine, which is exposed in tumor blood vessel endothelial cells but not in normal tissue endothelial cells). MRI and optical imaging were used to diagnose the PGN-l-IONP/DiR activity.171
A potential nanotheranostic agent can be made of polymeric NPs coupled with Gd ions and biotinylated vascular endothelial growth factor receptor antibodies and loaded with the anti-HCC medication sorafenib. Several protein kinases, including receptor tyrosine kinases and serine or threonine kinases, are inhibited by this.173 Du et al. developed a theranostic agent made of GX1-conjugated poly(lactic acid) NPs encasing Endostar (GPENs) and labeled with the near-infrared dye IRDye 800CW to increase colorectal tumor targeting and treatment effectiveness in vivo.(174) The in vivo fluorescent molecular imaging results showed that in mice with colorectal cancers GPENs more precisely targeted tumors than free IRDye 800CW (Figure 8). Additionally, bioluminescence imaging and immunohistology tests were used to assess the antitumor efficacy, which showed that GPENs had better antitumor efficacy on subcutaneous colorectal xenografts than other treatment groups. Thus, GPENs, a novel GX1 peptide-directed form of nanoscale Endostar, can be employed as a theranostic agent to enable real-time monitoring of treatment efficacy in vivo and permit more effective targeted therapy.174
Optical imaging is a noninvasive diagnostic method that enables the visualization of tissues using various techniques such as near-infrared (IR), fluorescent, and bioluminescent methods. In this approach, specific dyes are administered to the patient prior to imaging to facilitate the detection and analysis of tissues.175 To enable the effective use of these dyes in nanotheranostics, it is crucial to employ various delivery strategies, including both chemical and physical methods. Chemical approaches involve conjugating the dyes with lipids or polymers, while physical methods focus on nanoencapsulation. One successful example involved the conjugation of a pyrene polymer with an optical imaging dye, resulting in a nanoparticulate formulation. This approach demonstrated excellent tissue penetration capabilities and significantly enhanced fluorescence intensity, offering improved performance for optical imaging applications176 (refer to Figure 11).
Figure 11.
GPENs as a theranostic agent to enable real-time monitoring of treatment efficacy in vivo. (A) The biodistribution of GPENs. (B) Signal-to-noise ratio of GPEN fluorescence and free IRDye 800 CW. Adapted under CCBY4 from ref (174). Copyright (2015) DOVEpress.
Biomimetic Theranostics
Recent years have seen a substantial increase in interest in protein-based nanotheranostic drugs.177−179 Therapeutic and diagnostic substances have been transported inside engineered protein nanocages.180,181 Due to the proteinaceous structure of these nanocages, modifications can be made to both their internal and external surfaces. Drugs, aptamers, and contrast agents can be loaded onto the surface through internal surface modifications, while external surface modifications can facilitate ligand conjugation.182 The pyruvate dehydrogenase multienzyme complex in Bacillus stearothermophilus produces naturally occurring protein nanocages (E2 nanocages), which are 24 nm in size.183 These nanocages can be a flexible scaffold transporting theranostic drugs since they self-assemble from 60 monomeric units to produce a thermostable lattice structure.183 Ferritin nanocages have become popular in cancer theranostics, similar to E2 nanocages. CD71, overexpressed in tumor cells, has a natural affinity for the ferritin-heavy (H) chain.184,185 This unique property of ferritin can be used to find ferritin nanocages more specifically targeted to cancer cells, increasing the likelihood of effective theranostic drug delivery.180,181 Other groups of protein-based nanotheranostics agents, including protein nanocages, also show great promise. Examples of effective theranostic agents include nanoradiopeptides and fluorescent peptide nanoprobes.186,187 Additionally, researchers have created nanocomposites inspired by lipoproteins and shown theranostic potential in cancer treatment.188 Recently, novel cancer nanotheranostics agents were created via drug-induced self-assembly of altered albumins.189
Rong et al. developed protein-based photothermal theranostics for imaging-guided cancer therapy.179 In this study, a rigid cyclohexenyl ring was deliberately added to the heptamethine chain to create a heptamethine dye called CySCOOH, which has a high fluorescence intensity and good stability. The HSA@CySCOOH nanoplatform is particularly effective for NIR fluorescence/photoacoustic/thermal multimodality imaging and photothermal tumor ablation due to the covalent attachment of CySCOOH onto human serum albumin (HSA). In vitro and in vivo tests were conducted to systematically assess the theranostic potential of HSA@CySCOOH. Most intriguingly, complete tumor eradication was accomplished in mice with 4T1 tumors by intravenous injection of HSA@CySCOOH (CySCOOH, 1 mg/kg; 808 nm, 1.0W/cm2 for 5 min). No weight loss, apparent toxicity, or tumor recurrence was noted. The practical application of this protein-based nanotheranostics for cancer photothermal theranostics is made more accessible by its high water dispersibility, lack of off-target cytotoxicity, good biodegradability, and biocompatibility in its as-prepared state.179 Besides, along with whey, milk, and soy proteins, other proteins, like zein, gelatin, legumin, gliadin, elastin, and collagen, have also been employed as nanodrug/signaling agent carriers.190,191 In addition, a recent revolutionary approach to semiconductor nanocrystal production that uses protein nanoreactors has shown promise as a cancer theranostic tool.178 The nanoplatforms with their examples being employed for nanotheranostic applications in several biomedical engineering applications for treating solid tumors are listed in Table 1.
Table 1. Summarized Examples with the Role of Nanotheranostics for Solid Tumor Treatment.
Nanotheranostics | Examples | Applications | Addressing problems | Refs |
---|---|---|---|---|
Magnetotheranostics | •Multifunctional nanorice | •Multimodal imaging | •Quicker delivery | (137, 192, 193) |
•WS2-IO@MS-PEG | •Contrast agents | •Increased tissue penetration | ||
•MoS2/Fe3O4 composite | •Hyperthermal killing | •Specificity toward cancer cells | ||
•Drug delivery | •Good biofluid stability | |||
•Minimal toxicity | ||||
Plasmonic theranostics | •SERS nanoantennas | •High-contrast imaging systems | •Greater payloads | (151, 152, 194−197) |
•Gold nanoclusters | •Imaging and targeted therapy | •Quick endosomal escape | ||
•Gold–silver nanoshell (Ag/Au-NS) with glucose oxidase | •Precise therapeutic efficacy | •Minimal photobleaching | ||
•Au@Ag/Au-AAP nanoassemblies | •Photoacoustic imaging | •Effective site-specific theranostics | ||
•mAb-GNP-miR491-Qdot construct | ||||
•Au DENPs covalently coupled with α-TOS | ||||
Hybrid nanotheranostics | •SiNPs coupled with Alexa Fluor-488, iRGD peptide and dibenzocyclooctyl | •Antimitotic chemotherapeutics | •Selective targeting | (198−201) |
•EuGd-MSN-CPT | •Image-guided drug delivery | •Deliver insoluble drugs into cancer cells | ||
•CS-MSNs | •MRI and fluorescence imaging | |||
Graphene theranostics | •Graphene nanosheets | •Image-guided tumor ablation | •Ease of surface modification and functionalization | (202−205) |
•Gd-NGO | •Contrast agent for MRI | •Increased biocompatibility | ||
•Gd-NGO/Let-7g/EPI | •Chemoembolization therapy | |||
•Pc-graphene nanoplatform | •Molecular imaging diagnosis | |||
Bioresponsive soft theranostics | •PEGylated liposomes linked with IONPs and infrared dye (l-IONP/DiR) | •Superparamagnetic MRI | •Increased treatment effectiveness | (174, 206−208) |
•PGN-L-IONP/DiR nanocomposite | •Fluorescence imaging | •Excellent tissue penetration capabilities | ||
• GX1-conjugated poly(lactic acid) NPs encasing Endostar (GPENs) | •Real-time monitoring of treatment efficacy | |||
•Pyrene polymer with an optical imaging dye | •Optical imaging applications | |||
Biomimetic theranostics | •Ferritin nanocages | •NIR fluorescence/photoacoustic/thermal multimodality imaging | •More specific targeting to cancer cells | (209, 210) |
•HSA@CySCOOH nanoplatform | •Photothermal tumor ablation | •High fluorescence intensity | ||
•Good stability | ||||
•High water dispersibility | ||||
•Biodegradable and biocompatible |
Translational View
With all the uncertainty and possible hurdles affecting the molecule’s effectiveness, checking it in a living system before being marketed is crucial. In the initial research stage, animal models are incorporated to ensure various parameters such as safety, lethal dose, toxic dose, mechanism of action, etc. Wilmes et al. used dynamic contrast-enhanced MRI along with Axitinib in mice having a xenograft of a breast tumor.211 This leads to a decrease in angiogenesis. A significant reduction in the tumor was observed just in 3 weeks. In a week, the scientist noted a decrement in the perfusion of tumors compared to the control.211 Another study by Zhang et al. included the coadministration of PLGA and autophagy. Experimentation on mice concluded that tumor size in mice reduces to half compared to PLGA administration in just 20 days (refer to Table 2). This explains the effect of combination therapy in the diagnosis and treatment.212 Das et al. designed a molecule with four moieties, including a targeting agent, methotrexate, fluorochromem, and a targeting agent.213 The study concluded that in 24 h, the target accumulation of the drug was 19.14 and 8.62 times higher in human lung and breast cancer cells, respectively (in mice). It also facilitates the controlled release of methotrexate to promote a long-duration action.213
Table 2. Clinical Trials and Status.
Clinical trial title | Interventions | Number enrolled | Age | Applications | Remarks | NCT number |
---|---|---|---|---|---|---|
GI-101 as a single agent or in combination with pembrolizumab, lenvatinib, or local radiotherapy in advanced solid tumors | GI-101 | 374 | 18 years and older | Targeted delivery with reduced off-target toxicity | Assess the safety, tolerability, and toxicities of various agents | NCT04977453 |
Pembrolizumab | Used as imaging agents to visualize tumor lesions214 | The study is yet to enroll | ||||
Lenvatinib | ||||||
Radiation: local radiotherapy | ||||||
Methotrexate combined with immunotherapy during radiotherapy for solid tumors | Methotrexate tablets | 50 | 18–85 years | Targeted delivery with reduced systemic toxicity | Primary outcomes verify the percentage population that has a response (complete or partial) | NCT05522582 |
Anti-PD-1 monoclonal antibody | Potentiated the impact of radiotherapy on tumor cells by the enhanced accumulation of radiation at the tumor site215 | |||||
Radiation: radiotherapy | ||||||
Study of PD1 blockade by Pembrolizumab with stereotactic body radiotherapy in advanced solid tumors | Stereotactic body radiotherapy (SBRT) | 117 | 18 years and older | Targeted and efficient delivery of Pembrolizumab | Minimum of one dose constraint was observed in 52% of patients | NCT02608385 |
Enhanced tumor response | ||||||
Enhanced the effects of SBRT216 | ||||||
Local radiotherapy in combination with immunotherapy in advanced solid tumor patients | PD-1 blocking antibody | 55 | 18–75 years | Targeted delivery to the tumor site | The objective of the study is to reduce by 30% volume in at least a month | NCT05097781 |
Helped to overcome the immunosuppressive microenvironment | The study has not posted a result | |||||
Enhanced antitumor immune response217,218 | ||||||
ADC combined with hypofractionated radiotherapy, PD-1/PD-L1 and sequential GM-CSF and IL-2 for treatment of HER-2 positive advanced solid tumors (PRaG3.0) | ADC combined with radiotherapy, PD-1/PD-L1 sequential GM-CSF, and IL-2 | 55 | 18 years and older | Targeted delivery of ADC to HER-2 positive tumor cells | An adverse event was observed, such as alopecia, fatigue, rash, and hepatic damage | NCT05115500 |
Used as imaging agents to visualize tumor lesions219 | ||||||
Radiotherapy combined with Irinotecan and Apatinib followed by PD-1 antibody and apatinib for advanced solid tumors | Irinotecan liposome | 30 | 18–70 years | Targeted delivery of Irinotecan, Apatinib, and PD-1 antibody directly to the tumor site | Study is supposed to have its primary completion on February 2023 | NCT04569916 |
Apatinib | For synergistic effect219,220 | |||||
PD-1 antibody | ||||||
Radiation: radiotherapy | ||||||
Hypofractionated radiotherapy combined with PD-1 inhibitor sequential GM-CSF and IL-2 for the treatment of advanced refractory solid tumors (PRaG2.0) | Drug: PD-1 inhibitor | 66 | 18 years and older | Targeted delivery to increase the drug concentration in the tumor microenvironment | To a lesser extent, fatigue, rash, and decreased appetite were prevalent in various adverse events | NCT04892498 |
Drug: GM-CSF | As imaging agents221 | |||||
Drug: IL-2 | ||||||
Radiation: hypofractionated radiotherapy | ||||||
131I-L19SIP radioimmunotherapy (RIT) in combination with external beam radiation in patients with multiple brain metastases from solid tumors | 131I-L19SIP radioimmunotherapy (RIT) in combination with whole brain radiation therapy (WBRT) | 32 | 18 years and older | Improved the delivery of radioimmunotherapy agents across the blood–brain barrier | Not available | NCT01125085 |
Minimized systemic toxicity by selectively delivering radioimmunotherapy agents to the brain metastases222 | ||||||
Study of RP-3500 in combination with standard radiation therapy in people with solid tumor cancer | RP-3500 | 74 | 18 years and older | Enhanced the effects of standard radiation therapy | The study is yet recruiting, and results are not available | NCT05566574 |
Radiation: external beam radiotherapy (EBRT) | Designed to overcome resistance mechanisms, allowing RP-3500 to remain effective in tumors that have become resistant to standard treatments223 | |||||
Radiation Therapy and sargramostim in treating patients with advanced solid tumors | Sargramostim | N/A | 18 years and older | Immunomodulated and enhanced efficacy of sargramostim in combination with radiation therapy224 | Not available | NCT00091052 |
Radiation: radiotherapy | ||||||
Phase 1 trial of MSC2490484A, an inhibitor of a DNA-dependent protein kinase, in combination with radiotherapy | MSC2490484A (M3814) | 52 | 18 years and older | - | Dose −300 mg BID | NCT02516813 |
Radiation: fractionated RT | Adverse event observed— nausea, vomiting, fatigue, and rash | |||||
Cisplatin | ||||||
Study of NOX66 and external beam radiotherapy in patients with metastatic castration-resistant prostate cancer and other solid tumors | NOX66 | 100 | 18 years and older | Enhanced the effectiveness of NOX66, a sensitizer that enhances the effects of external beam radiotherapy on tumor cells | Currently enrolled in phase 1/2 | NCT04957290 |
Radiation: EBRT | ||||||
Study of AZD1390 and stereotactic body radiotherapy (SBRT) for people with metastatic solid tumor cancer | AZD1390 | 48 | 18 years and older | Enhanced the effectiveness of AZD1390, a DNA-PK inhibitor that sensitized tumor cells to the effects of SBRT225 | Dose could be 8 Gy in past administration or 20/25 Gy as 5 fractions administered over 5 days | NCT05678010 |
Radiation: SBRT | ||||||
Study of Avelumab-M3814 combinations | M3814 | 57 | 18 years and older | Enhanced the antitumor immune response | Phase 1 trials are under progression. No result was posted | NCT03724890 |
Avelumab | Selectively delivered Avelumab and M3814 to the tumor cells | |||||
Radiation: radiotherapy | Simultaneously targeted DNA repair pathways226 | |||||
CHEckpoint inhibition in combination with an immunoboost of external beam radiotherapy in solid tumors (CHEERS) | Nivolumab or Pembrolizumab or Atezolizumab | 99 | 18 years and older | - | The result is not available. | NCT03511391 |
Radiation: SBRT | ||||||
GDC-0084 with radiation therapy for people with PIK3CA-mutated solid tumor brain metastases or leptomeningeal metastases | GDC-0084 | 36 | 18 years and older | As imaging agents227 | Starting dose would be 45 mg daily, and the study focuses on determining the maximum lethal amount | NCT04192981 |
Radiation: whole brain radiation therapy |
Interplay of Known and Unknown Factors
Nanotheranostics represents a cutting-edge field at the intersection of nanotechnology and medical science, offering potential breakthroughs in diagnosing and treating solid tumors. Although it is an efficient strategy that may offer a more personalized and target-specific approach for cancer, it still has limitations that need to be addressed before successfully integrating this technology into the clinics. Moreover, the interplay of known and unknown factors in nanotheranostics is crucial for its success in effectively combating solid tumors. Enzymatic degradation, a significant limitation in nanotheranostics, hampers its affinity toward the target.228 Researchers have used LXL-1 aptamers as a nanotheranostics tool to precisely bind with the target molecule with high affinity and stability in treating triple-negative breast tumors. Still, the aptamer was easily degraded by nucleases, thus decreasing its bioavailability at the tumor site.229,230 Similar enzymatic degradation was also seen with platelet-derived gold-factor-aptamers conjugated with AuNPs intended to target a unique protein on the breast cancer cell line.231 Also, the 26-mer G-rich DNA aptamer selectively targets the nucleolin receptor in certain solid tumors but is still liable to enzyme degradation.232 Hence, nanotheranostics approaches for solid tumors must still be enhanced and integrated into aptamer-based targeted diagnostic tools.
In nanotheranostics, modified virus-like particles are undoubtedly used extensively to target solid tumors due to their ability to escape the endosomes before lysosomal degradation, thereby increasing drug bioavailability.233 However, most virus-like particles demonstrate tropism to heparin sulfates, which restricts their application as targeted nanotheranostics. However, some virus-like particles exhibit natural tropism to specific organs or tissues, such as HEV-like particles for hepatocytes,234,235 but it is also associated with a limitation of the eliciting innate immune response because of the presence of viral proteins that get easily absorbed by the dendritic cells.236 Therefore, despite the advantages associated with virus-like particles, such as adaptability, effective cell entry, biocompatibility, absence of endosomal sequestration, and multivalency, this nanotheranostics tool is still in the preliminary phase and requires animal model validation. Many studies have also been done with light-sensitive nanotheranostics for treating solid tumors. However, despite their biocompatibility and light-sensitive ability, this tool’s primary challenge is the drug field’s poor pharmacokinetics.237,238 Additionally, low permeation of light-sensitive drugs via nanotheranostics into the solid tumor is associated with phototoxicity, which stays in the systemic circulation for several weeks, which limits its use as a nanotheranostic.239,240 Photosensitive nanotheranostics also pose the challenge of photobleaching, making room for more improvements. Critical challenges associated with metallic nanotheranostics241−243 include retarded degradation and high cytotoxicity. In contrast, with nonmetallic nanotheranostics, the premature release of payload, with biological nanotheranostics, is a high-affinity binding with target proteins and quantum-dot-based nanotheranostics in rapid first-pass metabolism and clearance.244
Besides, most of the nanotheranostics used in solid tumor studies are intended for targeted therapy and diagnostics; current research in nanotheranostics mainly focuses on strategically integrating therapeutic and imaging techniques that ultimately limit the therapeutic efficacy locally at the tumor site while enhancing drug absorption. One major challenge for nanotheranostics assessment in tumor models is to simulate actual clinical conditions that must be addressed to restrict cancer progression and improve efficacy. Many studies used QDs coencapsulating a cytotoxic drug in lipid nanoparticles as a theranostic tool for a xenografted murine melanoma model, which showed escalated blood circulation time.245 Also, studies formulating surface-modified temperature-sensitive liposomes encapsulating chemotherapeutic agents and an MRI agent clearly showed enhanced drug release at the target site of the gliosarcoma.246 These few examples of research studies show a tremendously promising field for developing better nanotheranostics for solid tumors. Nanotheranostics with adequate auxiliary systems can accelerate diagnostic analysis and efficient treatment, improving patient compliance and survival. Nanotheranostics may also become an invaluable tool in the upcoming and future era of personalized therapeutics to choose the more appropriate treatment regimens, predict therapeutic responses, and track the patients’ clinical development. Moreover, mastering the cellular and molecular connection in nanotheranostics with solid tumors and being competent at combining numerous modalities into one system remain a significant challenge that needs a potential answer. Overall, this discovery should undoubtedly pique pharmaceutical firms’ attention very shortly for developing efficient theranostic nanoplatforms and the eventual release of such revolutionary nanotheranostics onto the market.
Conclusion
Cancer has remained one of science’s most vexing mysteries for centuries due to the variety of its etiologies. A complete cure for the disease is still improbable, despite the commendable increase in cancer patient survival rates brought about by better therapeutic and diagnostic procedures. Therefore, research is required to find cutting-edge cancer treatment and diagnosis methods. One of the advanced techniques, theranostics, offers a two-pronged advantage in cancer management. In light of nanotechnology, this integrated approach has become incredibly relevant. The tumor targeting and selectivity of NPs make them promising for cancer therapy. These NPs can offer protection from the immune system and increase their blood circulation times via surface modifications. To increase the effectiveness of NPs in targeting tumors, active targeting ligands can be added to their surfaces. NPs can be employed as functional building blocks to create “all-in-one” delivery systems that incorporate all necessary functionalities. All-in-one NPs can treat cancer by combining therapy, diagnosis, and monitoring procedures. Theranostic qualities can be tailored in NPs to create nanotheranostic agents by loading them with a mixture of therapeutic drugs and diagnostic probes. These nanocomposites can be customized for targeted drug delivery and are valuable tools for obliterating cancer cells while concurrently evaluating the drug’s efficacy. Nanotheranostic agents have become a wise strategy to identify the “route and reach” of the drugs and coordinate cancer treatment.
Despite the potential of nanotheranostics, successful clinical translation faces numerous obstacles. The scientific research community is working hard to get these nanotheranostics into clinical trials. Optimizing tumor accumulation/retention, the biodistribution of administered NPs and understanding how these nanomaterials interact with biological systems are currently critical challenges for all forms of cancer. The material utilized to develop the nanoplatform and its inherent ability to interact with the tumor microenvironment may be connected to our observed active and passive transportation differences. However, a promising future for polymeric-, metallic-, and lipid-based nanosystems combining diagnostic and therapeutic functions is anticipated. For this, noninvasive imaging techniques are strongly required to assess specificity receptor binding and internalization mechanisms of the nanosystems into the tumor cells. To accomplish this, it is necessary to develop a thorough understanding of how they interact, including a safety evaluation, from a biological standpoint. On the other hand, pharmaceutical companies must conduct clinical trials and introduce this nanotheranostics into the market to succeed. As was covered in this article, there are many ways to understand the function of nanotheranostics, particularly in cancer treatment.
In conclusion, the interplay of the known and unknown factors in conjugated nanoparticle-based theranostics for solid tumors is a dynamic process that requires consistent ongoing research and dedication. While significant progress has been made, further exploration and understanding of the unknown factors will drive the next wave of innovations in cancer diagnosis and therapy. Additionally, more effort should be put into scaling up the synthesis, evaluating the toxicity over time, and creating regulated guidelines for nanotheranostics. Moreover, as we continue to unravel the mysteries surrounding these nanoscale agents, the future of cancer treatment looks increasingly promising, offering renewed hope for patients and healthcare providers alike.
Acknowledgments
Dr. Rajendra Prasad thanks the director of IIT-BHU, Varanasi, U.P., for encouraging and providing the necessary facility and support. Dr. Rajendra would also like to thank the School of Biochemical Engineering, IIT-BHU. J.C. acknowledges the European Research Council – ERC Starting Grant 848325 for financial support.
Author Contributions
Conceptualization: V.P.C., R.P. Data curation: V.P., S.N.R.G. Formal analysis: R.B., R.P., V.P.C. Investigation: V.P.C., R.P., P.C.B., N.R.G. Project administration: P.C.B. Resources: L.V.N. Software: L.V.N. Supervision: V.P.C., R.P., S.N.R.G. Validation: S.N.R.G., V.P.C., R.P. Visualization: V.P.C., R.P., J.C., A.S.M. Roles/Writing: V.P.C., R.P., P.C.B., L.N.V., B.P., R.B., N.R.G., S.N.R.G.
The authors declare the following competing financial interest(s): J. Conde is a co-founder and shareholder of TargTex S.A. Targeted therapeutics for Glioblastoma Multiforme. R.P. is a part of national and international patents related to gold, silica, and liposome nanoparticles. All the other authors confirm no competing interests.
References
- Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer (accessed 2023-02-05).
- Tran K. B.; Lang J. J.; Compton K.; Xu R.; Acheson A. R.; Henrikson H. J.; Kocarnik J. M.; Penberthy L.; Aali A.; Abbas Q.; Abbasi B.; Abbasi-Kangevari M.; Abbasi-Kangevari Z.; Abbastabar H.; Abdelmasseh M.; Abd-Elsalam S.; Abdelwahab A. A.; Abdoli G.; Abdulkadir H. A.; Abedi A.; Abegaz K. H.; Abidi H.; Aboagye R. G.; Abolhassani H.; Absalan A.; Abtew Y. D.; Abubaker Ali H.; Abu-Gharbieh E.; Achappa B.; Acuna J. M.; Addison D.; Addo I. Y.; Adegboye O. A.; Adesina M. A.; Adnan M.; Adnani Q. E. S.; Advani S. M.; Afrin S.; Afzal M. S.; Aggarwal M.; Ahinkorah B. O.; Ahmad A. R.; Ahmad R.; Ahmad S.; Ahmad S.; Ahmadi S.; Ahmed H.; Ahmed L. A.; Ahmed M. B.; Ahmed Rashid T.; Aiman W.; Ajami M.; Akalu G. T.; Akbarzadeh-Khiavi M.; Aklilu A.; Akonde M.; Akunna C. J.; Al Hamad H.; Alahdab F.; Alanezi F. M.; Alanzi T. M.; Alessy S. A.; Algammal A. M.; Al-Hanawi M. K.; Alhassan R. K.; Ali B. A.; Ali L.; Ali S. S.; Alimohamadi Y.; Alipour V.; Aljunid S. M.; Alkhayyat M.; Al-Maweri S. A. A.; Almustanyir S.; Alonso N.; Alqalyoobi S.; Al-Raddadi R. M.; Al-Rifai R. H. H.; Al-Sabah S. K.; Al-Tammemi A. B.; Altawalah H.; Alvis-Guzman N.; Amare F.; Ameyaw E. K.; Aminian Dehkordi J. J.; Amirzade-Iranaq M. H.; Amu H.; Amusa G. A.; Ancuceanu R.; Anderson J. A.; Animut Y. A.; Anoushiravani A.; Anoushirvani A. A.; Ansari-Moghaddam A.; Ansha M. G.; Antony B.; Antwi M. H.; Anwar S. L.; Anwer R.; Anyasodor A. E.; Arabloo J.; Arab-Zozani M.; Aremu O.; Argaw A. M.; Ariffin H.; Aripov T.; Arshad M.; Artaman A.; Arulappan J.; Aruleba R. T.; Aryannejad A.; Asaad M.; Asemahagn M. A.; Asemi Z.; Asghari-Jafarabadi M.; Ashraf T.; Assadi R.; Athar M.; Athari S. S.; Atout M. M. W.; Attia S.; Aujayeb A.; Ausloos M.; Avila-Burgos L.; Awedew A. F.; Awoke M. A.; Awoke T.; Ayala Quintanilla B. P.; Ayana T. M.; Ayen S. S.; Azadi D.; Azadnajafabad S.; Azami-Aghdash S.; Azanaw M. M.; Azangou-Khyavy M.; Azari Jafari A.; Azizi H.; Azzam A. Y. Y.; Babajani A.; Badar M.; Badiye A. D.; Baghcheghi N.; Bagheri N.; Bagherieh S.; Bahadory S.; Baig A. A.; Baker J. L.; Bakhtiari A.; Bakshi R. K.; Banach M.; Banerjee I.; Bardhan M.; Barone-Adesi F.; Barra F.; Barrow A.; Bashir N. Z.; Bashiri A.; Basu S.; Batiha A.-M. M.; Begum A.; Bekele A. B.; Belay A. S.; Belete M. A.; Belgaumi U. I.; Bell A. W.; Belo L.; Benzian H.; Berhie A. Y.; Bermudez A. N. C.; Bernabe E.; Bhagavathula A. S.; Bhala N.; Bhandari B. B.; Bhardwaj N.; Bhardwaj P.; Bhattacharyya K.; Bhojaraja V. S.; Bhuyan S. S.; Bibi S.; Bilchut A. H.; Bintoro B. S.; Biondi A.; Birega M. G. B.; Birhan H. E.; Bjo̷rge T.; Blyuss O.; Bodicha B. B. A.; Bolla S. R.; Boloor A.; Bosetti C.; Braithwaite D.; Brauer M.; Brenner H.; Briko A. N.; Briko N. I.; Buchanan C. M.; Bulamu N. B.; Bustamante-Teixeira M. T.; Butt M. H.; Butt N. S.; Butt Z. A.; Caetano Dos Santos F. L.; Cámera L. A.; Cao C.; Cao Y.; Carreras G.; Carvalho M.; Cembranel F.; Cerin E.; Chakraborty P. A.; Charalampous P.; Chattu V. K.; Chimed-Ochir O.; Chirinos-Caceres J. L.; Cho D. Y.; Cho W. C. S.; Christopher D. J.; Chu D.-T.; Chukwu I. S.; Cohen A. J.; Conde J.; Cortés S.; Costa V. M.; Cruz-Martins N.; Culbreth G. T.; Dadras O.; Dagnaw F. T.; Dahlawi S. M. A.; Dai X.; Dandona L.; Dandona R.; Daneshpajouhnejad P.; Danielewicz A.; Dao A. T. M.; Darvishi Cheshmeh Soltani R.; Darwesh A. M.; Das S.; Davitoiu D. V.; Davtalab Esmaeili E.; De La Hoz F. P.; Debela S. A.; Dehghan A.; Demisse B.; Demisse F. W.; Denova-Gutiérrez E.; Derakhshani A.; Derbew Molla M.; Dereje D.; Deribe K. S.; Desai R.; Desalegn M. D.; Dessalegn F. N.; Dessalegni S. A. A.; Dessie G.; Desta A. A.; Dewan S. M. R.; Dharmaratne S. D.; Dhimal M.; Dianatinasab M.; Diao N.; Diaz D.; Digesa L. E.; Dixit S. G.; Doaei S.; Doan L. P.; Doku P. N.; Dongarwar D.; Dos Santos W. M.; Driscoll T. R.; Dsouza H. L.; Durojaiye O. C.; Edalati S.; Eghbalian F.; Ehsani-Chimeh E.; Eini E.; Ekholuenetale M.; Ekundayo T. C.; Ekwueme D. U.; El Tantawi M.; Elbahnasawy M. A.; Elbarazi I.; Elghazaly H.; Elhadi M.; El-Huneidi W.; Emamian M. H.; Engelbert Bain L.; Enyew D. B.; Erkhembayar R.; Eshetu T.; Eshrati B.; Eskandarieh S.; Espinosa-Montero J.; Etaee F.; Etemadimanesh A.; Eyayu T.; Ezeonwumelu I. J.; Ezzikouri S.; Fagbamigbe A. F.; Fahimi S.; Fakhradiyev I. R.; Faraon E. J. A.; Fares J.; Farmany A.; Farooque U.; Farrokhpour H.; Fasanmi A. O.; Fatehizadeh A.; Fatima W.; Fattahi H.; Fekadu G.; Feleke B. E.; Ferrari A. A.; Ferrero S.; Ferro Desideri L.; Filip I.; Fischer F.; Foroumadi R.; Foroutan M.; Fukumoto T.; Gaal P. A.; Gad M. M.; Gadanya M. A.; Gaipov A.; Galehdar N.; Gallus S.; Garg T.; Gaspar Fonseca M.; Gebremariam Y. H.; Gebremeskel T. G.; Gebremichael M. A.; Geda Y. F.; Gela Y. Y.; Gemeda B. N. B.; Getachew M.; Getachew M. E.; Ghaffari K.; Ghafourifard M.; Ghamari S.-H.; Ghasemi Nour M.; Ghassemi F.; Ghimire A.; Ghith N.; Gholamalizadeh M.; Gholizadeh Navashenaq J.; Ghozy S.; Gilani S. A.; Gill P. S.; Ginindza T. G.; Gizaw A. T. T.; Glasbey J. C.; Godos J.; Goel A.; Golechha M.; Goleij P.; Golinelli D.; Golitaleb M.; Gorini G.; Goulart B. N. G.; Grosso G.; Guadie H. A.; Gubari M. I. M.; Gudayu T. W.; Guerra M. R.; Gunawardane D. A.; Gupta B.; Gupta S.; Gupta V. B.; Gupta V. K.; Gurara M. K.; Guta A.; Habibzadeh P.; Haddadi Avval A.; Hafezi-Nejad N.; Hajj Ali A.; Haj-Mirzaian A.; Halboub E. S.; Halimi A.; Halwani R.; Hamadeh R. R.; Hameed S.; Hamidi S.; Hanif A.; Hariri S.; Harlianto N. I.; Haro J. M.; Hartono R. K.; Hasaballah A. I.; Hasan S. M. M.; Hasani H.; Hashemi S. M.; Hassan A. M.; Hassanipour S.; Hayat K.; Heidari G.; Heidari M.; Heidarymeybodi Z.; Herrera-Serna B. Y.; Herteliu C.; Hezam K.; Hiraike Y.; Hlongwa M. M.; Holla R.; Holm M.; Horita N.; Hoseini M.; Hossain M. M.; Hossain M. B. H.; Hosseini M.-S.; Hosseinzadeh A.; Hosseinzadeh M.; Hostiuc M.; Hostiuc S.; Househ M.; Huang J.; Hugo F. N.; Humayun A.; Hussain S.; Hussein N. R.; Hwang B.-F.; Ibitoye S. E.; Iftikhar P. M.; Ikuta K. S.; Ilesanmi O. S.; Ilic I. M.; Ilic M. D.; Immurana M.; Innos K.; Iranpour P.; Irham L. M.; Islam M. S.; Islam R. M.; Islami F.; Ismail N. E.; Isola G.; Iwagami M.; J L. M.; Jaiswal A.; Jakovljevic M.; Jalili M.; Jalilian S.; Jamshidi E.; Jang S.-I.; Jani C. T.; Javaheri T.; Jayarajah U. U.; Jayaram S.; Jazayeri S. B.; Jebai R.; Jemal B.; Jeong W.; Jha R. P.; Jindal H. A.; John-Akinola Y. O.; Jonas J. B.; Joo T.; Joseph N.; Joukar F.; Jozwiak J. J.; Jürisson M.; Kabir A.; Kacimi S. E. O.; Kadashetti V.; Kahe F.; Kakodkar P. V.; Kalankesh L. R.; Kalankesh L. R.; Kalhor R.; Kamal V. K.; Kamangar F.; Kamath A.; Kanchan T.; Kandaswamy E.; Kandel H.; Kang H.; Kanno G. G.; Kapoor N.; Kar S. S.; Karanth S. D.; Karaye I. M.; Karch A.; Karimi A.; Kassa B. G.; Katoto P. D.; Kauppila J. H.; Kaur H.; Kebede A. G.; Keikavoosi-Arani L.; Kejela G. G.; Kemp Bohan P. M.; Keramati M.; Keykhaei M.; Khajuria H.; Khan A.; Khan A. A. K.; Khan E. A.; Khan G.; Khan M. N.; Khan M. A.; Khanali J.; Khatab K.; Khatatbeh M. M.; Khatib M. N.; Khayamzadeh M.; Khayat Kashani H. R.; Khazeei Tabari M. A.; Khezeli M.; Khodadost M.; Kim M. S.; Kim Y. J.; Kisa A.; Kisa S.; Klugar M.; Klugarová J.; Kolahi A.-A.; Kolkhir P.; Kompani F.; Koul P. A.; Koulmane Laxminarayana S. L.; Koyanagi A.; Krishan K.; Krishnamoorthy Y.; Kucuk Bicer B.; Kugbey N.; Kulimbet M.; Kumar A.; Kumar G. A.; Kumar N.; Kurmi O. P.; Kuttikkattu A.; La Vecchia C.; Lahiri A.; Lal D. K.; Lám J.; Lan Q.; Landires I.; Larijani B.; Lasrado S.; Lau J.; Lauriola P.; Ledda C.; Lee S.; Lee S. W. H.; Lee W.-C.; Lee Y. Y.; Lee Y. H.; Legesse S. M.; Leigh J.; Leong E.; Li M.-C.; Lim S. S.; Liu G.; Liu J.; Lo C.-H.; Lohiya A.; Lopukhov P. D.; Lorenzovici L.; Lotfi M.; Loureiro J. A.; Lunevicius R.; Madadizadeh F.; Mafi A. R.; Magdeldin S.; Mahjoub S.; Mahmoodpoor A.; Mahmoudi M.; Mahmoudimanesh M.; Mahumud R. A.; Majeed A.; Majidpoor J.; Makki A.; Makris K. C.; Malakan Rad E.; Malekpour M.-R.; Malekzadeh R.; Malik A. A.; Mallhi T. H.; Mallya S. D.; Mamun M. A.; Manda A. L.; Mansour-Ghanaei F.; Mansouri B.; Mansournia M. A.; Mantovani L. G.; Martini S.; Martorell M.; Masoudi S.; Masoumi S. Z.; Matei C. N.; Mathews E.; Mathur M. R.; Mathur V.; McKee M.; Meena J. K.; Mehmood K.; Mehrabi Nasab E.; Mehrotra R.; Melese A.; Mendoza W.; Menezes R. G.; Mengesha Si. D.; Mensah L. G.; Mentis A.-F. A.; Mera-Mamián A. Y. M.; Meretoja T. J.; Merid M. W.; Mersha A. G.; Meselu B. T.; Meshkat M.; Mestrovic T.; Miao Jonasson J.; Miazgowski T.; Michalek I. M.; Mijena G. F. W.; Miller T. R.; Mir S. A.; Mirinezhad S. K.; Mirmoeeni S.; Mirza-Aghazadeh-Attari M.; Mirzaei H.; Mirzaei H. R.; Misganaw A. S.; Misra S.; Mohammad K. A.; Mohammadi E.; Mohammadi M.; Mohammadian-Hafshejani A.; Mohammadpourhodki R.; Mohammed A.; Mohammed S.; Mohan S.; Mohseni M.; Moka N.; Mokdad A. H.; Molassiotis A.; Molokhia M.; Momenzadeh K.; Momtazmanesh S.; Monasta L.; Mons U.; Montasir A. A.; Montazeri F.; Montero A.; Moosavi M. A.; Moradi A.; Moradi Y.; Moradi Sarabi M.; Moraga P.; Morawska L.; Morrison S. D.; Morze J.; Mosapour A.; Mostafavi E.; Mousavi S. M.; Mousavi Isfahani H.; Mousavi Khaneghah A.; Mpundu-Kaambwa C.; Mubarik S.; Mulita F.; Munblit D.; Munro S. B.; Murillo-Zamora E.; Musa J.; Nabhan A. F.; Nagarajan A. J.; Nagaraju S. P.; Nagel G.; Naghipour M.; Naimzada M. D.; Nair T. S.; Naqvi A. A.; Narasimha Swamy S.; Narayana A. I.; Nassereldine H.; Natto Z. S.; Nayak B. P.; Ndejjo R.; Nduaguba S. O.; Negash W. W.; Nejadghaderi S. A.; Nejati K.; Neupane Kandel S.; Nguyen H. V. N.; Niazi R. K.; Noor N. M.; Noori M.; Noroozi N.; Nouraei H.; Nowroozi A.; Nuñez-Samudio V.; Nzoputam C. I.; Nzoputam O. J.; Oancea B.; Odukoya O. O.; Oghenetega O. B.; Ogunsakin R. E.; Oguntade A. S.; Oh I.-H.; Okati-Aliabad H.; Okekunle A. P.; Olagunju A. T.; Olagunju T. O.; Olakunde B. O.; Olufadewa I. I.; Omer E.; Omonisi A. E. E.; Ong S.; Onwujekwe O. E.; Orru H.; Otstavnov S. S.; Oulhaj A.; Oumer B.; Owopetu O. F.; Oyinloye B. E.; P A M.; Padron-Monedero A.; Padubidri J. R.; Pakbin B.; Pakshir K.; Pakzad R.; Palicz T.; Pana A.; Pandey A.; Pandey A.; Pant S.; Pardhan S.; Park E.-C.; Park E.-K.; Park S.; Patel J.; Pati S.; Paudel R.; Paudel U.; Paun M.; Pazoki Toroudi H.; Peng M.; Pereira J.; Pereira R. B.; Perna S.; Perumalsamy N.; Pestell R. G.; Pezzani R.; Piccinelli C.; Pillay J. D.; Piracha Z. Z.; Pischon T.; Postma M. J.; Pourabhari Langroudi A.; Pourshams A.; Pourtaheri N.; Prashant A.; Qadir M. M. F.; Quazi Syed Z.; Rabiee M.; Rabiee N.; Radfar A.; Radhakrishnan R. A.; Radhakrishnan V.; Raeisi M.; Rafiee A.; Rafiei A.; Raheem N.; Rahim F.; Rahman M. O.; Rahman M.; Rahman M. A.; Rahmani A. M.; Rahmani S.; Rahmanian V.; Rajai N.; Rajesh A.; Ram P.; Ramezanzadeh K.; Rana J.; Ranabhat K.; Ranasinghe P.; Rao C. R.; Rao S. J.; Rashedi S.; Rashidi A.; Rashidi M.; Rashidi M.-M.; Ratan Z. A.; Rawaf D. L.; Rawaf S.; Rawal L.; Rawassizadeh R.; Razeghinia M. S.; Rehman A. U.; Rehman I. U.; Reitsma M. B.; Renzaho A. M. N.; Rezaei M.; Rezaei N.; Rezaei N.; Rezaei N.; Rezaei S.; Rezaeian M.; Rezapour A.; Riad A.; Rikhtegar R.; Rios-Blancas M.; Roberts T. J.; Rohloff P.; Romero-Rodríguez E.; Roshandel G.; Rwegerera G. M.; S M.; Saber-Ayad M. M.; Saberzadeh-Ardestani B.; Sabour S.; Saddik B.; Sadeghi E.; Saeb M. R.; Saeed U.; Safaei M.; Safary A.; Sahebazzamani M.; Sahebkar A.; Sahoo H.; Sajid M. R.; Salari H.; Salehi S.; Salem M. R.; Salimzadeh H.; Samodra Y. L.; Samy A. M.; Sanabria J.; Sankararaman S.; Sanmarchi F.; Santric-Milicevic M. M.; Saqib M. A. N.; Sarveazad A.; Sarvi F.; Sathian B.; Satpathy M.; Sayegh N.; Schneider I. J. C.; Schwarzinger M.; Šekerija M.; Senthilkumaran S.; Sepanlou S. G.; Seylani A.; Seyoum K.; Sha F.; Shafaat O.; Shah P. A.; Shahabi S.; Shahid I.; Shahrbaf M. A.; Shahsavari H. R.; Shaikh M. A.; Shaka M. F.; Shaker E.; Shannawaz M.; Sharew M. M. S.; Sharifi A.; Sharifi-Rad J.; Sharma P.; Shashamo B. B.; Sheikh A.; Sheikh M.; Sheikhbahaei S.; Sheikhi R. A.; Sheikhy A.; Shepherd P. R.; Shetty A.; Shetty J. K.; Shetty R. S.; Shibuya K.; Shirkoohi R.; Shirzad-Aski H.; Shivakumar K. M.; Shivalli S.; Shivarov V.; Shobeiri P.; Shokri Varniab Z.; Shorofi S. A.; Shrestha S.; Sibhat M. M.; Siddappa Malleshappa S. K.; Sidemo N. B.; Silva D. A. S.; Silva L. M. L. R.; Silva Julian G.; Silvestris N.; Simegn W.; Singh A. D.; Singh A.; Singh G.; Singh H.; Singh J. A.; Singh J. K.; Singh P.; Singh S.; Sinha D. N.; Sinke A. H.; Siraj M. S.; Sitas F.; Siwal S. S.; Skryabin V. Y.; Skryabina A. A.; Socea B.; Soeberg M. J.; Sofi-Mahmudi A.; Solomon Y.; Soltani-Zangbar M. S.; Song S.; Song Y.; Sorensen R. J. D.; Soshnikov S.; Sotoudeh H.; Sowe A.; Sufiyan M. B.; Suk R.; Suleman M.; Suliankatchi Abdulkader R.; Sultana S.; Sur D.; Szócska M.; Tabaeian S. P.; Tabarés-Seisdedos R.; Tabatabaei S. M.; Tabuchi T.; Tadbiri H.; Taheri E.; Taheri M.; Taheri Soodejani M.; Takahashi K.; Talaat I. M.; Tampa M.; Tan K.-K.; Tat N. Y.; Tat V. Y.; Tavakoli A.; Tavakoli A.; Tehrani-Banihashemi A.; Tekalegn Y.; Tesfay F. H.; Thapar R.; Thavamani A.; Thoguluva Chandrasekar V.; Thomas N.; Thomas N. K.; Ticoalu J. H. V.; Tiyuri A.; Tollosa D. N.; Topor-Madry R.; Touvier M.; Tovani-Palone M. R.; Traini E.; Tran M. T. N.; Tripathy J. P.; Ukke G. G.; Ullah I.; Ullah S.; Ullah S.; Unnikrishnan B.; Vacante M.; Vaezi M.; Valadan Tahbaz S.; Valdez P. R.; Vardavas C.; Varthya S. B.; Vaziri S.; Velazquez D. Z.; Veroux M.; Villeneuve P. J.; Violante F. S.; Vladimirov S. K.; Vlassov V.; Vo B.; Vu L. G.; Wadood A. W.; Waheed Y.; Walde M. T.; Wamai R. G.; Wang C.; Wang F.; Wang N.; Wang Y.; Ward P.; Waris A.; Westerman R.; Wickramasinghe N. D.; Woldemariam M.; Woldu B.; Xiao H.; Xu S.; Xu X.; Yadav L.; Yahyazadeh Jabbari S. H.; Yang L.; Yazdanpanah F.; Yeshaw Y.; Yismaw Y.; Yonemoto N.; Younis M. Z.; Yousefi Z.; Yousefian F.; Yu C.; Yu Y.; Yunusa I.; Zahir M.; Zaki N.; Zaman B. A.; Zangiabadian M.; Zare F.; Zare I.; Zareshahrabadi Z.; Zarrintan A.; Zastrozhin M. S.; Zeineddine M. A.; Zhang D.; Zhang J.; Zhang Y.; Zhang Z.-J.; Zhou L.; Zodpey S.; Zoladl M.; Vos T.; Hay S. I.; Force L. M.; Murray C. J. L. The Global Burden of Cancer Attributable to Risk Factors, 2010–19: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400 (10352), 563–591. 10.1016/S0140-6736(22)01438-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Global Burden of Disease 2019 Cancer Collaboration:; Kocarnik J. M.; Compton K.; Dean F. E.; Fu W.; Gaw B. L.; Harvey J. D.; Henrikson H. J.; Lu D.; Pennini A.; Xu R.; Ababneh E.; Abbasi-Kangevari M.; Abbastabar H.; Abd-Elsalam S. M.; Abdoli A.; Abedi A.; Abidi H.; Abolhassani H.; Adedeji I. A.; Adnani Q. E. S.; Advani S. M.; Afzal M. S.; Aghaali M.; Ahinkorah B. O.; Ahmad S.; Ahmad T.; Ahmadi A.; Ahmadi S.; Ahmed Rashid T.; Ahmed Salih Y.; Akalu G. T.; Aklilu A.; Akram T.; Akunna C. J.; Al Hamad H.; Alahdab F.; Al-Aly Z.; Ali S.; Alimohamadi Y.; Alipour V.; Aljunid S. M.; Alkhayyat M.; Almasi-Hashiani A.; Almasri N. A.; Al-Maweri S. A. A.; Almustanyir S.; Alonso N.; Alvis-Guzman N.; Amu H.; Anbesu E. W.; Ancuceanu R.; Ansari F.; Ansari-Moghaddam A.; Antwi M. H.; Anvari D.; Anyasodor A. E.; Aqeel M.; Arabloo J.; Arab-Zozani M.; Aremu O.; Ariffin H.; Aripov T.; Arshad M.; Artaman A.; Arulappan J.; Asemi Z.; Asghari Jafarabadi M.; Ashraf T.; Atorkey P.; Aujayeb A.; Ausloos M.; Awedew A. F.; Ayala Quintanilla B. P.; Ayenew T.; Azab M. A.; Azadnajafabad S.; Azari Jafari A.; Azarian G.; Azzam A. Y.; Badiye A. D.; Bahadory S.; Baig A. A.; Baker J. L.; Balakrishnan S.; Banach M.; Bärnighausen T. W.; Barone-Adesi F.; Barra F.; Barrow A.; Behzadifar M.; Belgaumi U. I.; Bezabhe W. M. M.; Bezabih Y. M.; Bhagat D. S.; Bhagavathula A. S.; Bhardwaj N.; Bhardwaj P.; Bhaskar S.; Bhattacharyya K.; Bhojaraja V. S.; Bibi S.; Bijani A.; Biondi A.; Bisignano C.; Bjo̷rge T.; Bleyer A.; Blyuss O.; Bolarinwa O. A.; Bolla S. R.; Braithwaite D.; Brar A.; Brenner H.; Bustamante-Teixeira M. T.; Butt N. S.; Butt Z. A.; Caetano Dos Santos F. L.; Cao Y.; Carreras G.; Catalá-López F.; Cembranel F.; Cerin E.; Cernigliaro A.; Chakinala R. C.; Chattu S. K.; Chattu V. K.; Chaturvedi P.; Chimed-Ochir O.; Cho D. Y.; Christopher D. J.; Chu D.-T.; Chung M. T.; Conde J.; Cortés S.; Cortesi P. A.; Costa V. M.; Cunha A. R.; Dadras O.; Dagnew A. B.; Dahlawi S. M. A.; Dai X.; Dandona L.; Dandona R.; Darwesh A. M.; Das Neves J.; De La Hoz F. P.; Demis A. B.; Denova-Gutiérrez E.; Dhamnetiya D.; Dhimal M. L.; Dhimal M.; Dianatinasab M.; Diaz D.; Djalalinia S.; Do H. P.; Doaei S.; Dorostkar F.; Dos Santos Figueiredo F. W.; Driscoll T. R.; Ebrahimi H.; Eftekharzadeh S.; El Tantawi M.; El-Abid H.; Elbarazi I.; Elhabashy H. R.; Elhadi M.; El-Jaafary S. I.; Eshrati B.; Eskandarieh S.; Esmaeilzadeh F.; Etemadi A.; Ezzikouri S.; Faisaluddin M.; Faraon E. J. A.; Fares J.; Farzadfar F.; Feroze A. H.; Ferrero S.; Ferro Desideri L.; Filip I.; Fischer F.; Fisher J. L.; Foroutan M.; Fukumoto T.; Gaal P. A.; Gad M. M.; Gadanya M. A.; Gallus S.; Gaspar Fonseca M.; Getachew Obsa A.; Ghafourifard M.; Ghashghaee A.; Ghith N.; Gholamalizadeh M.; Gilani S. A.; Ginindza T. G.; Gizaw A. T. T.; Glasbey J. C.; Golechha M.; Goleij P.; Gomez R. S.; Gopalani S. V.; Gorini G.; Goudarzi H.; Grosso G.; Gubari M. I. M.; Guerra M. R.; Guha A.; Gunasekera D. S.; Gupta B.; Gupta V. B.; Gupta V. K.; Gutiérrez R. A.; Hafezi-Nejad N.; Haider M. R.; Haj-Mirzaian A.; Halwani R.; Hamadeh R. R.; Hameed S.; Hamidi S.; Hanif A.; Haque S.; Harlianto N. I.; Haro J. M.; Hasaballah A. I.; Hassanipour S.; Hay R. J.; Hay S. I.; Hayat K.; Heidari G.; Heidari M.; Herrera-Serna B. Y.; Herteliu C.; Hezam K.; Holla R.; Hossain M. M.; Hossain M. B. H.; Hosseini M.-S.; Hosseini M.; Hosseinzadeh M.; Hostiuc M.; Hostiuc S.; Househ M.; Hsairi M.; Huang J.; Hugo F. N.; Hussain R.; Hussein N. R.; Hwang B.-F.; Iavicoli I.; Ibitoye S. E.; Ida F.; Ikuta K. S.; Ilesanmi O. S.; Ilic I. M.; Ilic M. D.; Irham L. M.; Islam J. Y.; Islam R. M.; Islam S. M. S.; Ismail N. E.; Isola G.; Iwagami M.; Jacob L.; Jain V.; Jakovljevic M. B.; Javaheri T.; Jayaram S.; Jazayeri S. B.; Jha R. P.; Jonas J. B.; Joo T.; Joseph N.; Joukar F.; Jürisson M.; Kabir A.; Kahrizi D.; Kalankesh L. R.; Kalhor R.; Kaliyadan F.; Kalkonde Y.; Kamath A.; Kameran Al-Salihi N.; Kandel H.; Kapoor N.; Karch A.; Kasa A. S.; Katikireddi S. V.; Kauppila J. H.; Kavetskyy T.; Kebede S. A.; Keshavarz P.; Keykhaei M.; Khader Y. S.; Khalilov R.; Khan G.; Khan M.; Khan M. N.; Khan M. A. B.; Khang Y.-H.; Khater A. M.; Khayamzadeh M.; Kim G. R.; Kim Y. J.; Kisa A.; Kisa S.; Kissimova-Skarbek K.; Kopec J. A.; Koteeswaran R.; Koul P. A.; Koulmane Laxminarayana S. L.; Koyanagi A.; Kucuk Bicer B.; Kugbey N.; Kumar G. A.; Kumar N.; Kumar N.; Kurmi O. P.; Kutluk T.; La Vecchia C.; Lami F. H.; Landires I.; Lauriola P.; Lee S.; Lee S. W. H.; Lee W.-C.; Lee Y. H.; Leigh J.; Leong E.; Li J.; Li M.-C.; Liu X.; Loureiro J. A.; Lunevicius R.; Magdy Abd El Razek M.; Majeed A.; Makki A.; Male S.; Malik A. A.; Mansournia M. A.; Martini S.; Masoumi S. Z.; Mathur P.; McKee M.; Mehrotra R.; Mendoza W.; Menezes R. G.; Mengesha E. W.; Mesregah M. K.; Mestrovic T.; Miao Jonasson J.; Miazgowski B.; Miazgowski T.; Michalek I. M.; Miller T. R.; Mirzaei H.; Mirzaei H. R.; Misra S.; Mithra P.; Moghadaszadeh M.; Mohammad K. A.; Mohammad Y.; Mohammadi M.; Mohammadi S. M.; Mohammadian-Hafshejani A.; Mohammed S.; Moka N.; Mokdad A. H.; Molokhia M.; Monasta L.; Moni M. A.; Moosavi M. A.; Moradi Y.; Moraga P.; Morgado-da-Costa J.; Morrison S. D.; Mosapour A.; Mubarik S.; Mwanri L.; Nagarajan A. J.; Nagaraju S. P.; Nagata C.; Naimzada M. D.; Nangia V.; Naqvi A. A.; Narasimha Swamy S.; Ndejjo R.; Nduaguba S. O.; Negoi I.; Negru S. M.; Neupane Kandel S.; Nguyen C. T.; Nguyen H. L. T.; Niazi R. K.; Nnaji C. A.; Noor N. M.; Nuñez-Samudio V.; Nzoputam C. I.; Oancea B.; Ochir C.; Odukoya O. O.; Ogbo F. A.; Olagunju A. T.; Olakunde B. O.; Omar E.; Omar Bali A.; Omonisi A. E. E.; Ong S.; Onwujekwe O. E.; Orru H.; Ortega-Altamirano D. V.; Otstavnov N.; Otstavnov S. S.; Owolabi M. O.; P A M.; Padubidri J. R.; Pakshir K.; Pana A.; Panagiotakos D.; Panda-Jonas S.; Pardhan S.; Park E.-C.; Park E.-K.; Pashazadeh Kan F.; Patel H. K.; Patel J. R.; Pati S.; Pattanshetty S. M.; Paudel U.; Pereira D. M.; Pereira R. B.; Perianayagam A.; Pillay J. D.; Pirouzpanah S.; Pishgar F.; Podder I.; Postma M. J.; Pourjafar H.; Prashant A.; Preotescu L.; Rabiee M.; Rabiee N.; Radfar A.; Radhakrishnan R. A.; Radhakrishnan V.; Rafiee A.; Rahim F.; Rahimzadeh S.; Rahman M.; Rahman M. A.; Rahmani A. M.; Rajai N.; Rajesh A.; Rakovac I.; Ram P.; Ramezanzadeh K.; Ranabhat K.; Ranasinghe P.; Rao C. R.; Rao S. J.; Rawassizadeh R.; Razeghinia M. S.; Renzaho A. M. N.; Rezaei N.; Rezaei N.; Rezapour A.; Roberts T. J.; Rodriguez J. A. B.; Rohloff P.; Romoli M.; Ronfani L.; Roshandel G.; Rwegerera G. M.; S M.; Sabour S.; Saddik B.; Saeed U.; Sahebkar A.; Sahoo H.; Salehi S.; Salem M. R.; Salimzadeh H.; Samaei M.; Samy A. M.; Sanabria J.; Sankararaman S.; Santric-Milicevic M. M.; Sardiwalla Y.; Sarveazad A.; Sathian B.; Sawhney M.; Saylan M.; Schneider I. J. C.; Sekerija M.; Seylani A.; Shafaat O.; Shaghaghi Z.; Shaikh M. A.; Shamsoddin E.; Shannawaz M.; Sharma R.; Sheikh A.; Sheikhbahaei S.; Shetty A.; Shetty J. K.; Shetty P. H.; Shibuya K.; Shirkoohi R.; Shivakumar K. M.; Shivarov V.; Siabani S.; Siddappa Malleshappa S. K.; Silva D. A. S.; Singh J. A.; Sintayehu Y.; Skryabin V. Y.; Skryabina A. A.; Soeberg M. J.; Sofi-Mahmudi A.; Sotoudeh H.; Steiropoulos P.; Straif K.; Subedi R.; Sufiyan M. B.; Sultan I.; Sultana S.; Sur D.; Szerencsés V.; Szócska M.; Tabarés-Seisdedos R.; Tabuchi T.; Tadbiri H.; Taherkhani A.; Takahashi K.; Talaat I. M.; Tan K.-K.; Tat V. Y.; Tedla B. A. A.; Tefera Y. G.; Tehrani-Banihashemi A.; Temsah M.-H.; Tesfay F. H.; Tessema G. A.; Thapar R.; Thavamani A.; Thoguluva Chandrasekar V.; Thomas N.; Tohidinik H. R.; Touvier M.; Tovani-Palone M. R.; Traini E.; Tran B. X.; Tran K. B.; Tran M. T. N.; Tripathy J. P.; Tusa B. S.; Ullah I.; Ullah S.; Umapathi K. K.; Unnikrishnan B.; Upadhyay E.; Vacante M.; Vaezi M.; Valadan Tahbaz S.; Velazquez D. Z.; Veroux M.; Violante F. S.; Vlassov V.; Vo B.; Volovici V.; Vu G. T.; Waheed Y.; Wamai R. G.; Ward P.; Wen Y. F.; Westerman R.; Winkler A. S.; Yadav L.; Yahyazadeh Jabbari S. H.; Yang L.; Yaya S.; Yazie T. S. Y.; Yeshaw Y.; Yonemoto N.; Younis M. Z.; Yousefi Z.; Yu C.; Yuce D.; Yunusa I.; Zadnik V.; Zare F.; Zastrozhin M. S.; Zastrozhina A.; Zhang J.; Zhong C.; Zhou L.; Zhu C.; Ziapour A.; Zimmermann I. R.; Fitzmaurice C.; Murray C. J. L.; Force L. M. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol 2022, 8 (3), 420. 10.1001/jamaoncol.2021.6987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolston K. V. I. Infections in Cancer Patients with Solid Tumors: A Review. Infect Dis Ther 2017, 6 (1), 69–83. 10.1007/s40121-017-0146-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogt A.; Schmid S.; Heinimann K.; Frick H.; Herrmann C.; Cerny T.; Omlin A. Multiple Primary Tumours: Challenges and Approaches, a Review. ESMO Open 2017, 2 (2), e000172 10.1136/esmoopen-2017-000172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avritscher E. B. C.; Cooksley C. D.; Rolston K. V.; Swint J. M.; Delclos G. L.; Franzini L.; Swisher S. G.; Walsh G. L.; Mansfield P. F.; Elting L. S. Serious Postoperative Infections Following Resection of Common Solid Tumors: Outcomes, Costs, and Impact of Hospital Surgical Volume. Support Care Cancer 2014, 22 (2), 527–535. 10.1007/s00520-013-2006-1. [DOI] [PubMed] [Google Scholar]
- Wang Y.; Wang Z.; Xu C.; Tian H.; Chen X. A Disassembling Strategy Overcomes the EPR Effect and Renal Clearance Dilemma of the Multifunctional Theranostic Nanoparticles for Cancer Therapy. Biomaterials 2019, 197, 284–293. 10.1016/j.biomaterials.2019.01.025. [DOI] [PubMed] [Google Scholar]
- Maeda H.; Nakamura H.; Fang J. The EPR Effect for Macromolecular Drug Delivery to Solid Tumors: Improvement of Tumor Uptake, Lowering of Systemic Toxicity, and Distinct Tumor Imaging in Vivo. Adv. Drug Delivery Rev. 2013, 65 (1), 71–79. 10.1016/j.addr.2012.10.002. [DOI] [PubMed] [Google Scholar]
- Liao C.; Liu X.; Zhang C.; Zhang Q. Tumor Hypoxia: From Basic Knowledge to Therapeutic Implications. Seminars in Cancer Biology 2023, 88, 172–186. 10.1016/j.semcancer.2022.12.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kheshtchin N.; Hadjati J. Targeting Hypoxia and Hypoxia-Inducible Factor-1 in the Tumor Microenvironment for Optimal Cancer Immunotherapy. Journal of Cellular Physiology 2022, 237 (2), 1285–1298. 10.1002/jcp.30643. [DOI] [PubMed] [Google Scholar]
- Zhan W.; Alamer M.; Xu X. Y. Computational Modelling of Drug Delivery to Solid Tumour: Understanding the Interplay between Chemotherapeutics and Biological System for Optimised Delivery Systems. Adv. Drug Delivery Rev. 2018, 132, 81–103. 10.1016/j.addr.2018.07.013. [DOI] [PubMed] [Google Scholar]
- Vavourakis V.; Stylianopoulos T.; Wijeratne P. A. Correction: In-Silico Dynamic Analysis of Cytotoxic Drug Administration to Solid Tumours: Effect of Binding Affinity and Vessel Permeability. PLoS Comput. Biol. 2019, 15 (3), e1006880 10.1371/journal.pcbi.1006880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J.; Zhang W.; Xie Z.; Wang X.; Luo Y.; Jiang W.; Liu Y.; Wang Z.; Ran H.; Song W.; Guo D. Magnetic Nanodroplets for Enhanced Deep Penetration of Solid Tumors and Simultaneous Magnetothermal-Sensitized Immunotherapy against Tumor Proliferation and Metastasis. Adv. Healthcare Mater. 2022, 11 (23), 2201399. 10.1002/adhm.202201399. [DOI] [PubMed] [Google Scholar]
- Yook S.; Cai Z.; Lu Y.; Pignol J.-P.; Winnik M.; Reilly R. Abstract P4–15–04: Synthesis and Characterization of EGFR Antibody-Mediated Tumor Targeted “Gold Nanobombs” for Treatment of Locally Advanced Breast Cancer. Cancer Res. 2013, 73, P4-15-04. 10.1158/0008-5472.SABCS13-P4-15-04. [DOI] [Google Scholar]
- Hargadon K. M.; Johnson C. E.; Williams C. J. Immune Checkpoint Blockade Therapy for Cancer: An Overview of FDA-Approved Immune Checkpoint Inhibitors. International Immunopharmacology 2018, 62, 29–39. 10.1016/j.intimp.2018.06.001. [DOI] [PubMed] [Google Scholar]
- Moore D. C. Monitoring Respirations with a Gauze Thread: An Ancient and Outdated Technique. Anesthesiology 1984, 61 (5), 623–624. 10.1097/00000542-198411000-00034. [DOI] [PubMed] [Google Scholar]
- Muthu M. S.; Leong D. T.; Mei L.; Feng S.-S. Nanotheranostics - Application and Further Development of Nanomedicine Strategies for Advanced Theranostics. Theranostics 2014, 4 (6), 660–677. 10.7150/thno.8698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chavda V. P.Chapter 4 - Nanobased Nano Drug Delivery: A Comprehensive Review. In Micro and Nano Technologies; Mohapatra S. S., Ranjan S., Dasgupta N., Mishra R. K., Thomas S. B. T.-A., Eds.; Elsevier, 2019; pp 69–92. [Google Scholar]
- Chavda V. P.Chapter 1 - Nanotherapeutics and Nanobiotechnology. In Applications of Targeted Nano Drugs and Delivery Systems; Mohapatra S. S., Ranjan S., Dasgupta N., Mishra R. K., Thomas S., Eds.; Elsevier, 2019; pp 1–13. 10.1016/B978-0-12-814029-1.00001-6. [DOI] [Google Scholar]
- Bezbaruah R.; Chavda V. P.; Nongrang L.; Alom S.; Deka K.; Kalita T.; Ali F.; Bhattacharjee B.; Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines 2022, 10 (11), 1946. 10.3390/vaccines10111946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chavda V. P.; Jogi G.; Shah N.; Athalye M. N.; Bamaniya N.; K Vora L.; Cláudia Paiva-Santos A. Advanced Particulate Carrier-Mediated Technologies for Nasal Drug Delivery. Journal of Drug Delivery Science and Technology 2022, 74, 103569–103569. 10.1016/j.jddst.2022.103569. [DOI] [Google Scholar]
- Chavda V. P.; Patel A. B.; Mistry K. J.; Suthar S. F.; Wu Z.-X.; Chen Z.-S.; Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Frontiers in Oncology 2022, 10.3389/fonc.2022.867655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chavda V. P.; Sugandhi V. V.; Pardeshi C. V.; Patil R. J.; Joshi M.; Patel B.; Khadela A.; Bezbaruah R.; Bhattacharjee B.; Balar P. C.; Vora L. K. Engineered Exosomes for Cancer Theranostics: Next-Generation Tumor Targeting. Journal of Drug Delivery Science and Technology 2023, 85, 104579 10.1016/j.jddst.2023.104579. [DOI] [Google Scholar]
- Chavda V. P.; Pandya A.; Kumar L.; Raval N.; Vora L. K.; Pulakkat S.; Patravale V.; Salwa; Duo Y.; Tang B. Z. Exosome Nanovesicles: A Potential Carrier for Therapeutic Delivery. Nano Today 2023, 49, 101771 10.1016/j.nantod.2023.101771. [DOI] [Google Scholar]
- Arranja A. G.; Pathak V.; Lammers T.; Shi Y. Tumor-Targeted Nanomedicines for Cancer Theranostics. Pharmacol. Res. 2017, 115, 87–95. 10.1016/j.phrs.2016.11.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddique S.; Chow J. C. L. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. Nanomaterials 2022, 12 (16), 2826. 10.3390/nano12162826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deo S. V. S.; Sharma J.; Kumar S. GLOBOCAN 2020 Report on Global Cancer Burden: Challenges and Opportunities for Surgical Oncologists. Ann. Surg Oncol 2022, 29 (11), 6497–6500. 10.1245/s10434-022-12151-6. [DOI] [PubMed] [Google Scholar]
- Ferlay J.; Colombet M.; Soerjomataram I.; Parkin D. M.; Piñeros M.; Znaor A.; Bray F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149 (4), 778–789. 10.1002/ijc.33588. [DOI] [PubMed] [Google Scholar]
- Chhikara B. S.; Parang K. Global Cancer Statistics 2022: The Trends Projection Analysis. Chemical Biology Letters 2023, 10 (1), 451–451. [Google Scholar]; https://scholar.google.com/scholar?q=urn:nbn:sciencein.cbl.2023.v10.451.
- Ma L.-Y.; Chen W.-W.; Gao R.-L.; Liu L.-S.; Zhu M.-L.; Wang Y.-J.; Wu Z.-S.; Li H.-J.; Gu D.-F.; Yang Y.-J.; Zheng Z.; Hu S.-S. China Cardiovascular Diseases Report 2018: An Updated Summary. J. Geriatr Cardiol 2020, 17 (1), 1–8. 10.11909/j.issn.1671-5411.2020.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baghban R.; Roshangar L.; Jahanban-Esfahlan R.; Seidi K.; Ebrahimi-Kalan A.; Jaymand M.; Kolahian S.; Javaheri T.; Zare P. Tumor Microenvironment Complexity and Therapeutic Implications at a Glance. Cell Commun. Signal 2020, 18 (1), 59. 10.1186/s12964-020-0530-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen T.; Wang Z.; Zhou W.; Chong Z.; Meric-Bernstam F.; Mills G. B.; Chen K. Hotspot Mutations Delineating Diverse Mutational Signatures and Biological Utilities across Cancer Types. BMC Genomics 2016, 17 (S2), 394. 10.1186/s12864-016-2727-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grobner S. N.; Worst B. C.; Weischenfeldt J.; Buchhalter I.; Kleinheinz K.; Rudneva V. A.; Johann P. D.; Balasubramanian G. P.; Segura-Wang M.; Brabetz S.; Bender S.; Hutter B.; Sturm D.; Pfaff E.; Hubschmann D.; Zipprich G.; Heinold M.; Eils J.; Lawerenz C.; Erkek S.; Lambo S.; Waszak S.; Blattmann C.; Borkhardt A.; Kuhlen M.; Eggert A.; Fulda S.; Gessler M.; Wegert J.; Kappler R.; Baumhoer D.; Burdach S.; Kirschner-Schwabe R.; Kontny U.; Kulozik A. E.; Lohmann D.; Hettmer S.; Eckert C.; Bielack S.; Nathrath M.; Niemeyer C.; Richter G. H.; Schulte J.; Siebert R.; Westermann F.; Molenaar J. J.; Vassal G.; Witt H.; Burkhardt B.; Kratz C. P.; Witt O.; van Tilburg C. M.; Kramm C. M.; Fleischhack G.; Dirksen U.; Rutkowski S.; Fruhwald M.; von Hoff K.; Wolf S.; Klingebiel T.; Koscielniak E.; Landgraf P.; Koster J.; Resnick A. C.; Zhang J.; Liu Y.; Zhou X.; Waanders A. J.; Zwijnenburg D. A.; Raman P.; Brors B.; Weber U. D.; Northcott P. A.; Pajtler K. W.; Kool M.; Piro R. M.; Korbel J. O.; Schlesner M.; Eils R.; Jones D. T. W.; Lichter P.; Chavez L.; Zapatka M.; Pfister S. M. The Landscape of Genomic Alterations across Childhood Cancers. Nature 2018, 555 (7696), 321–327. 10.1038/nature25480. [DOI] [PubMed] [Google Scholar]
- Herrera G. A.; Turbat-Herrera E. A. Sarcoma and Look-Alikes: The Important Role of Ultrastructural Evaluation. Ultrastructural Pathology 2008, 32 (2), 43–50. 10.1080/01913120801897075. [DOI] [PubMed] [Google Scholar]
- Eilber F. C.; Brennan M. F.; Riedel E.; Alektiar K. M.; Antonescu C. R.; Singer S. Prognostic Factors for Survival in Patients With Locally Recurrent Extremity Soft Tissue Sarcomas. Ann. Surg Oncol 2005, 12 (3), 228–236. 10.1245/ASO.2005.03.045. [DOI] [PubMed] [Google Scholar]
- Messiou C.; Morosi C. Imaging in Retroperitoneal Soft Tissue Sarcoma. J. Surg Oncol 2018, 117 (1), 25–32. 10.1002/jso.24891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cañete A.; Jovani C.; Lopez A.; Costa E.; Segarra V.; Fernández J. M.; Verdeguer A.; Velázquez J.; Castel V. Surgical Treatment for Neuroblastoma: Complications during 15 Years’ Experience. Journal of Pediatric Surgery 1998, 33 (10), 1526–1530. 10.1016/S0022-3468(98)90490-0. [DOI] [PubMed] [Google Scholar]
- PDQ Pediatric Treatment Edtorial Board . Neuroblastoma Treatment: Health Professional Version. In PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda (MD), 2002. [Google Scholar]
- Fratino G.; Molinari A. C.; Parodi S.; Longo S.; Saracco P.; Castagnola E.; Haupt R. Central Venous Catheter-Related Complications in Children with Oncological/Hematological Diseases: An Observational Study of 418 Devices. Annals of Oncology 2005, 16 (4), 648–654. 10.1093/annonc/mdi111. [DOI] [PubMed] [Google Scholar]
- Johnson E. M.; Saltzman D. A.; Suh G.; Dahms R. A.; Leonard A. S. Complications and Risks of Central Venous Catheter Placement in Children. Surgery 1998, 124 (5), 911–916. 10.1016/S0039-6060(98)70016-9. [DOI] [PubMed] [Google Scholar]
- van Driel W. J.; Koole S. N.; Sikorska K.; Schagen van Leeuwen J. H.; Schreuder H. W. R.; Hermans R. H. M.; de Hingh I. H. J. T.; van der Velden J.; Arts H. J.; Massuger L. F. A. G.; Aalbers A. G. J.; Verwaal V. J.; Kieffer J. M.; Van de Vijver K. K.; van Tinteren H.; Aaronson N. K.; Sonke G. S. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N Engl J. Med. 2018, 378 (3), 230–240. 10.1056/NEJMoa1708618. [DOI] [PubMed] [Google Scholar]
- Abdellatif A. A.; Younis M. A.; Alsharidah M.; Al Rugaie O.; Tawfeek H. M. Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. IJN 2022, 17, 1951–1970. 10.2147/IJN.S357980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Pinel B.; Porras-Alcalá C.; Ortega-Rodríguez A.; Sarabia F.; Prados J.; Melguizo C.; López-Romero J. M. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials 2019, 9 (4), 638. 10.3390/nano9040638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kommineni N.; Chaudhari R.; Conde J.; Tamburaci S.; Cecen B.; Chandra P.; Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater. Sci. Eng. 2023, 9, 4527. 10.1021/acsbiomaterials.3c00510. [DOI] [PubMed] [Google Scholar]
- Chavda V. P.; Vihol D.; Mehta B.; Shah D.; Patel M.; Vora L. K.; Pereira-Silva M.; Paiva-Santos A. C. Phytochemical-Loaded Liposomes for Anticancer Therapy: An Updated Review. Nanomedicine 2022, 17, 547. 10.2217/nnm-2021-0463. [DOI] [PubMed] [Google Scholar]
- Prasad R.; Jain N. K.; Yadav A. S.; Chauhan D. S.; Devrukhkar J.; Kumawat M. K.; Shinde S.; Gorain M.; Thakor A. S.; Kundu G. C.; Conde J.; Srivastava R. Liposomal Nanotheranostics for Multimode Targeted in Vivo Bioimaging and Near-infrared Light Mediated Cancer Therapy. Communications Biology 2020, 3 (1), 284. 10.1038/s42003-020-1016-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mydin R. B. S. M. N.; Moshawih S.. Nanoparticles in Nanomedicine Application: Lipid-Based Nanoparticles and Their Safety Concerns. In Nanotechnology: Applications in Energy, Drug and Food; Siddiquee S., Melvin G. J. H., Rahman Md. M., Eds.; Springer International Publishing: Cham, 2019; pp 227–232. 10.1007/978-3-319-99602-8_10. [DOI] [Google Scholar]
- Rajabi M.; Mousa S. Lipid Nanoparticles and Their Application in Nanomedicine. CPB 2016, 17 (8), 662–672. 10.2174/1389201017666160415155457. [DOI] [PubMed] [Google Scholar]
- Sheoran S.; Arora S.; Samsonraj R.; Govindaiah P.; Vuree S. Lipid-Based Nanoparticles for Treatment of Cancer. Heliyon 2022, 8 (5), e09403 10.1016/j.heliyon.2022.e09403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binaghi G.; Folli G.; Giani P.; Mortarino G. On the variable projection of currents in ischemic lesions during exercise. Atti Soc. Ital Cardiol 1968, 2, 181–184. [PubMed] [Google Scholar]
- Lu P.-L.; Chen Y.-C.; Ou T.-W.; Chen H.-H.; Tsai H.-C.; Wen C.-J.; Lo C.-L.; Wey S.-P.; Lin K.-J.; Yen T.-C.; Hsiue G.-H. Multifunctional Hollow Nanoparticles Based on Graft-Diblock Copolymers for Doxorubicin Delivery. Biomaterials 2011, 32 (8), 2213–2221. 10.1016/j.biomaterials.2010.11.051. [DOI] [PubMed] [Google Scholar]
- Lebeault J. M.; Zévaco C.; Hermier J. Purification and properties of NAD-dehydrogenases intervening in the germination of Bacillus subtilis spores. I. L. alanine: NAD oxidoreductase (deaminating). Bull. Soc. Chim Biol. (Paris) 1970, 52 (10), 1073–1088. [PubMed] [Google Scholar]
- Zhu J.; Wang G.; Alves C. S.; Tomás H.; Xiong Z.; Shen M.; Rodrigues J.; Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for PH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. Langmuir 2018, 34 (41), 12428–12435. 10.1021/acs.langmuir.8b02901. [DOI] [PubMed] [Google Scholar]
- Palmerston Mendes L.; Pan J.; Torchilin V. P. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017, 22 (9), 1401. 10.3390/molecules22091401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer D.; Li Y.; Ahlemeyer B.; Krieglstein J.; Kissel T. In Vitro Cytotoxicity Testing of Polycations: Influence of Polymer Structure on Cell Viability and Hemolysis. Biomaterials 2003, 24 (7), 1121–1131. 10.1016/S0142-9612(02)00445-3. [DOI] [PubMed] [Google Scholar]
- Rittner K.; Benavente A.; Bompard-Sorlet A.; Heitz F.; Divita G.; Brasseur R.; Jacobs E. New Basic Membrane-Destabilizing Peptides for Plasmid-Based Gene Delivery in Vitro and in Vivo. Molecular Therapy 2002, 5 (2), 104–114. 10.1006/mthe.2002.0523. [DOI] [PubMed] [Google Scholar]
- Sonali; Viswanadh M. K.; Singh R. P.; Agrawal P.; Mehata A. K.; Pawde D. M.; Narendra; Sonkar R.; Muthu M. S. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer. Nanotheranostics 2018, 2 (1), 70–86. 10.7150/ntno.21638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho H.; Kwon G. S. Polymeric Micelles for Neoadjuvant Cancer Therapy and Tumor-Primed Optical Imaging. ACS Nano 2011, 5 (11), 8721–8729. 10.1021/nn202676u. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lammers T.; Ulbrich K. HPMA Copolymers: 30 Years of Advances. Adv. Drug Deliv Rev. 2010, 62 (2), 119–121. 10.1016/j.addr.2009.12.004. [DOI] [PubMed] [Google Scholar]
- Kopeček J.; Kopečková P. HPMA Copolymers: Origins, Early Developments, Present, and Future. Adv. Drug Delivery Rev. 2010, 62 (2), 122–149. 10.1016/j.addr.2009.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura H.; Etrych T.; Chytil P.; Ohkubo M.; Fang J.; Ulbrich K.; Maeda H. Two Step Mechanisms of Tumor Selective Delivery of N-(2-Hydroxypropyl)Methacrylamide Copolymer Conjugated with Pirarubicin via an Acid-Cleavable Linkage. J. Controlled Release 2014, 174, 81–87. 10.1016/j.jconrel.2013.11.011. [DOI] [PubMed] [Google Scholar]
- Khan S. A.Chapter 1 - Metal Nanoparticles Toxicity: Role of Physicochemical Aspects. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Shah M. R., Imran M., Ullah S., Eds.; Micro and Nano Technologies; Elsevier, 2020; pp 1–11. 10.1016/B978-0-12-816960-5.00001-X. [DOI] [Google Scholar]
- Singla R.; Sharma C.; Shukla A. K.; Acharya A. Toxicity Concerns of Therapeutic Nanomaterials. j nanosci nanotechnol 2019, 19 (4), 1889–1907. 10.1166/jnn.2019.16502. [DOI] [PubMed] [Google Scholar]
- Ali M. R. K.; Wu Y.; El-Sayed M. A. Gold-Nanoparticle-Assisted Plasmonic Photothermal Therapy Advances Toward Clinical Application. J. Phys. Chem. C 2019, 123 (25), 15375–15393. 10.1021/acs.jpcc.9b01961. [DOI] [Google Scholar]
- Aldosari F. M. M. Characterization of Labeled Gold Nanoparticles for Surface-Enhanced Raman Scattering. Molecules 2022, 27 (3), 892. 10.3390/molecules27030892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedrosa P.; Vinhas R.; Fernandes A.; Baptista P. V. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?. Nanomaterials 2015, 5 (4), 1853–1879. 10.3390/nano5041853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou J.; Ralston J.; Sedev R.; Beattie D. A. Functionalized Gold Nanoparticles: Synthesis, Structure and Colloid Stability. J. Colloid Interface Sci. 2009, 331 (2), 251–262. 10.1016/j.jcis.2008.12.002. [DOI] [PubMed] [Google Scholar]
- Wang X.; He B.; Nie J.; Yin W.; Fa H.; Chen C. An Enhanced Oxime-Based Biomimetic Electrochemical Sensor Modified with Multifunctional AuNPs–Co3O4–NG Composites for Dimethoate Determination. Res. Chem. Intermed. 2018, 44 (11), 6689–6702. 10.1007/s11164-018-3516-8. [DOI] [Google Scholar]
- Abnous K.; Danesh N. M.; Ramezani M.; Taghdisi S. M.; Emrani A. S. A Novel Colorimetric Aptasensor for Ultrasensitive Detection of Cocaine Based on the Formation of Three-Way Junction Pockets on the Surfaces of Gold Nanoparticles. Anal. Chim. Acta 2018, 1020, 110–115. 10.1016/j.aca.2018.02.066. [DOI] [PubMed] [Google Scholar]
- Jiang L.; Han J.; Li J.; Jia W.; Tian Y.; Yao L.; Li X. Photothermal Therapy of Cancer Cells Using Novel Hollow Gold Nanoflowers. IJN 2014, 517, 517. 10.2147/IJN.S55800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandri G.; Miele D.; Faccendini A.; Bonferoni M. C.; Rossi S.; Grisoli P.; Taglietti A.; Ruggeri M.; Bruni G.; Vigani B.; Ferrari F. Chitosan/Glycosaminoglycan Scaffolds: The Role of Silver Nanoparticles to Control Microbial Infections in Wound Healing. Polymers 2019, 11 (7), 1207. 10.3390/polym11071207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abou El-Nour K. M. M.; Eftaiha A.; Al-Warthan A.; Ammar R. A. A. Synthesis and Applications of Silver Nanoparticles. Arabian Journal of Chemistry 2010, 3 (3), 135–140. 10.1016/j.arabjc.2010.04.008. [DOI] [Google Scholar]
- Ali A.; Zafar H.; Zia M.; Ul Haq I.; Phull A. R.; Ali J. S.; Hussain A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. NSA 2016, 9, 49–67. 10.2147/NSA.S99986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X.-F.; Liu Z.-G.; Shen W.; Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. IJMS 2016, 17 (9), 1534. 10.3390/ijms17091534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greish K. Enhanced Permeability and Retention of Macromolecular Drugs in Solid Tumors: A Royal Gate for Targeted Anticancer Nanomedicines. J. Drug Targeting 2007, 15 (7–8), 457–464. 10.1080/10611860701539584. [DOI] [PubMed] [Google Scholar]
- Veiseh O. Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging. Adv. Drug Delivery Rev. 2010, 62 (3), 284–304. 10.1016/j.addr.2009.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carvalho de Jesus P. da C.; Pellosi D. S.; Tedesco A. C.. Chapter 12 - Magnetic Nanoparticles: Applications in Biomedical Processes as Synergic Drug-Delivery Systems. In Materials for Biomedical Engineering; Holban A.-M., Grumezescu A. M., Eds.; Elsevier, 2019; pp 371–396. 10.1016/B978-0-12-816913-1.00012-X. [DOI] [Google Scholar]
- Dobson J. Magnetic Nanoparticles for Drug Delivery. Drug Dev. Res. 2006, 67 (1), 55–60. 10.1002/ddr.20067. [DOI] [Google Scholar]
- Belyanina I.; Kolovskaya O.; Zamay S.; Gargaun A.; Zamay T.; Kichkailo A. Targeted Magnetic Nanotheranostics of Cancer. Molecules 2017, 22 (6), 975. 10.3390/molecules22060975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mura S.; Couvreur P. Nanotheranostics for Personalized Medicine. Adv. Drug Delivery Rev. 2012, 64 (13), 1394–1416. 10.1016/j.addr.2012.06.006. [DOI] [PubMed] [Google Scholar]
- Zhang P.; Hu C.; Ran W.; Meng J.; Yin Q.; Li Y. Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment. Theranostics 2016, 6 (7), 948–968. 10.7150/thno.15217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi J.; Park J. C.; Nah H.; Woo S.; Oh J.; Kim K. M.; Cheon G. J.; Chang Y.; Yoo J.; Cheon J. A Hybrid Nanoparticle Probe for Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. Angew. Chem., Int. Ed. 2008, 47 (33), 6259–6262. 10.1002/anie.200801369. [DOI] [PubMed] [Google Scholar]
- Srinivas M.; Aarntzen E. H. J. G.; Bulte J. W. M.; Oyen W. J.; Heerschap A.; de Vries I. J. M.; Figdor C. G. Imaging of Cellular Therapies. Adv. Drug Delivery Rev. 2010, 62 (11), 1080–1093. 10.1016/j.addr.2010.08.009. [DOI] [PubMed] [Google Scholar]
- Zhao Z.; Guo Q.; Cao L.; Jiang S.; Mao F.; Guo Y.; Meng L.; Wu Z. Thickness Control of Mesoporous Silica Coated on Gold Nanorod. J. Nanopart. Res. 2021, 23 (8), 197. 10.1007/s11051-021-05317-y. [DOI] [Google Scholar]
- van der Hoeven J. E. S.; Gurunarayanan H.; Bransen M.; de Winter D. A. M.; de Jongh P. E.; van Blaaderen A. Silica-Coated Gold Nanorod Supraparticles: A Tunable Platform for Surface Enhanced Raman Spectroscopy. Adv. Funct. Mater. 2022, 32 (27), 2200148. 10.1002/adfm.202200148. [DOI] [Google Scholar]
- Mitiche S.; Gueffrache S.; Marguet S.; Audibert J.-F.; Pansu R. B.; Palpant B. Coating Gold Nanorods with Silica Prevents the Generation of Reactive Oxygen Species under Laser Light Irradiation for Safe Biomedical Applications. J. Mater. Chem. B 2022, 10 (4), 589–597. 10.1039/D1TB02207E. [DOI] [PubMed] [Google Scholar]
- Chen M.-H.; Chen M.-H.; Li C.-Y.; Tung F.-I.; Chen S.-Y.; Liu T.-Y. Using Gold-Nanorod-Filled Mesoporous Silica Nanobeads for Enhanced Radiotherapy of Oral Squamous Carcinoma. Nanomaterials 2021, 11 (9), 2235. 10.3390/nano11092235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mueller E. N.; Alina T. B.; Curry S. D.; Ganguly S.; Cha J. N.; Goodwin A. P. Silica-Coated Gold Nanorods with Hydrophobic Modification Show Both Enhanced Two-Photon Fluorescence and Ultrasound Drug Release. J. Mater. Chem. B 2022, 10 (47), 9789–9793. 10.1039/D2TB02197H. [DOI] [PubMed] [Google Scholar]
- He J.; He Y.; Wu X.; Zhang X.; Hu R.; Tang B. Z.; Xu Q.-H. Mesoporous Silica-Encapsulated Gold Nanorods for Drug Delivery/Release and Two-Photon Excitation Fluorescence Imaging to Guide Synergistic Phototherapy and Chemotherapy. ACS Appl. Bio Mater. 2023, 6, 3433. 10.1021/acsabm.3c00132. [DOI] [PubMed] [Google Scholar]
- Kato Y.; Kikuchi F.; Imura Y.; Yoshimura E.; Suzuki M.. Various Shapes of Gold Nanoparticles Synthesized by Glycolipids Extracted from Lactobacillus Casei. In Biomineralization; Endo K., Kogure T., Nagasawa H., Eds.; Springer: Singapore, 2018; pp 259–265. 10.1007/978-981-13-1002-7_27. [DOI] [Google Scholar]
- Xie X.; Liao J.; Shao X.; Li Q.; Lin Y. The Effect of Shape on Cellular Uptake of Gold Nanoparticles in the Forms of Stars, Rods, and Triangles. Sci. Rep 2017, 7 (1), 3827. 10.1038/s41598-017-04229-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khursheed R.; Dua K.; Vishwas S.; Gulati M.; Jha N. K.; Aldhafeeri G. M.; Alanazi F. G.; Goh B. H.; Gupta G.; Paudel K. R.; Hansbro P. M.; Chellappan D. K.; Singh S. K. Biomedical Applications of Metallic Nanoparticles in Cancer: Current Status and Future Perspectives. Biomedicine & Pharmacotherapy 2022, 150, 112951 10.1016/j.biopha.2022.112951. [DOI] [PubMed] [Google Scholar]
- Mukherjee A.; Sarkar D.; Sasmal S. A Review of Green Synthesis of Metal Nanoparticles Using Algae. Front Microbiol 2021, 12, 693899 10.3389/fmicb.2021.693899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruna T.; Maldonado-Bravo F.; Jara P.; Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22 (13), 7202. 10.3390/ijms22137202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yaqoob A. A.; Ahmad H.; Parveen T.; Ahmad A.; Oves M.; Ismail I. M. I.; Qari H. A.; Umar K.; Mohamad Ibrahim M. N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Frontiers in Chemistry 2020, 10.3389/fchem.2020.00341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iga A. M.; Robertson J. H. P.; Winslet M. C.; Seifalian A. M. Clinical Potential of Quantum Dots. Journal of Biomedicine and Biotechnology 2007, 2007, 1–10. 10.1155/2007/76087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clapp A. Potential Clinical Applications of Quantum Dots. IJN 2008, 151. 10.2147/IJN.S614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y.; Vela J.; Htoon H.; Casson J. L.; Werder D. J.; Bussian D. A.; Klimov V. I.; Hollingsworth J. A. Giant” Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking. J. Am. Chem. Soc. 2008, 130 (15), 5026–5027. 10.1021/ja711379k. [DOI] [PubMed] [Google Scholar]
- Jing L.; Ding K.; Kershaw S. V.; Kempson I. M.; Rogach A. L.; Gao M. Magnetically Engineered Semiconductor Quantum Dots as Multimodal Imaging Probes. Adv. Mater. 2014, 26 (37), 6367–6386. 10.1002/adma.201402296. [DOI] [PubMed] [Google Scholar]
- Ji X.; Peng F.; Zhong Y.; Su Y.; He Y. Fluorescent Quantum Dots: Synthesis, Biomedical Optical Imaging, and Biosafety Assessment. Colloids Surf., B 2014, 124, 132–139. 10.1016/j.colsurfb.2014.08.036. [DOI] [PubMed] [Google Scholar]
- Tan A.; Yildirimer L.; Rajadas J.; De La Peña H.; Pastorin G.; Seifalian A. Quantum Dots and Carbon Nanotubes in Oncology: A Review on Emerging Theranostic Applications in Nanomedicine. Nanomedicine 2011, 6 (6), 1101–1114. 10.2217/nnm.11.64. [DOI] [PubMed] [Google Scholar]
- Savla R.; Taratula O.; Garbuzenko O.; Minko T. Tumor Targeted Quantum Dot-Mucin 1 Aptamer-Doxorubicin Conjugate for Imaging and Treatment of Cancer. J. Controlled Release 2011, 153 (1), 16–22. 10.1016/j.jconrel.2011.02.015. [DOI] [PubMed] [Google Scholar]
- Wang X.; Sun X.; Lao J.; He H.; Cheng T.; Wang M.; Wang S.; Huang F. Multifunctional Graphene Quantum Dots for Simultaneous Targeted Cellular Imaging and Drug Delivery. Colloids Surf., B 2014, 122, 638–644. 10.1016/j.colsurfb.2014.07.043. [DOI] [PubMed] [Google Scholar]
- Derfus A. M.; Chen A. A.; Min D.-H.; Ruoslahti E.; Bhatia S. N. Targeted Quantum Dot Conjugates for SiRNA Delivery. Bioconjugate Chem. 2007, 18 (5), 1391–1396. 10.1021/bc060367e. [DOI] [PubMed] [Google Scholar]
- Tandale P.; Choudhary N.; Singh J.; Sharma A.; Shukla A.; Sriram P.; Soni U.; Singla N.; Barnwal R. P.; Singh G.; Kaur I. P.; Suttee A. Fluorescent Quantum Dots: An Insight on Synthesis and Potential Biological Application as Drug Carrier in Cancer. Biochemistry and Biophysics Reports 2021, 26, 100962 10.1016/j.bbrep.2021.100962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y.; Chen J.; Tian J.; Wang G.; Luo W.; Huang Z.; Huang Y.; Li N.; Guo M.; Fan X. Tryptophan-Sorbitol Based Carbon Quantum Dots for Theranostics against Hepatocellular Carcinoma. J. Nanobiotechnol 2022, 20 (1), 78. 10.1186/s12951-022-01275-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu C.; Li L.; Wang S.; Xu Y.; Wang L.; Huang Y.; Hieawy A.; Liu H.; Ma J. Advances in Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review. Bioactive Materials 2023, 25, 430–444. 10.1016/j.bioactmat.2022.08.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer G. The Chemical Biology of Aptamers. Angew. Chem., Int. Ed. 2009, 48 (15), 2672–2689. 10.1002/anie.200804643. [DOI] [PubMed] [Google Scholar]
- Siafaka P. I.; Okur N. Ü.; Karantas I. D.; Okur M. E.; Gündoğdu E. A. Current Update on Nanoplatforms as Therapeutic and Diagnostic Tools: A Review for the Materials Used as Nanotheranostics and Imaging Modalities. Asian Journal of Pharmaceutical Sciences 2021, 16 (1), 24–46. 10.1016/j.ajps.2020.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pendergrast P. S.; Marsh H. N.; Grate D.; Healy J. M.; Stanton M. Nucleic Acid Aptamers for Target Validation and Therapeutic Applications. Journal of biomolecular techniques: JBT 2005, 16 (3), 224. [PMC free article] [PubMed] [Google Scholar]
- Gasparini C.; Feldmann M. NF-ΚB as a Target for Modulating Inflammatory Responses. Current pharmaceutical design 2012, 18 (35), 5735–5745. 10.2174/138161212803530763. [DOI] [PubMed] [Google Scholar]
- Liu J.; Li R.; Yang B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6 (12), 2179–2195. 10.1021/acscentsci.0c01306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang S.-T.; Wang X.; Wang H.; Lu F.; Luo P. G.; Cao L.; Meziani M. J.; Liu J.-H.; Liu Y.; Chen M.; Huang Y.; Sun Y.-P. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. J. Phys. Chem. C 2009, 113 (42), 18110–18114. 10.1021/jp9085969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tao H.; Yang K.; Ma Z.; Wan J.; Zhang Y.; Kang Z.; Liu Z. In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small 2012, 8 (2), 281–290. 10.1002/smll.201101706. [DOI] [PubMed] [Google Scholar]
- Sun Y.-P.; Zhou B.; Lin Y.; Wang W.; Fernando K. A. S.; Pathak P.; Meziani M. J.; Harruff B. A.; Wang X.; Wang H.; Luo P. G.; Yang H.; Kose M. E.; Chen B.; Veca L. M.; Xie S.-Y. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128 (24), 7756–7757. 10.1021/ja062677d. [DOI] [PubMed] [Google Scholar]
- Bao X.; Yuan Y.; Chen J.; Zhang B.; Li D.; Zhou D.; Jing P.; Xu G.; Wang Y.; Holá K.; Shen D.; Wu C.; Song L.; Liu C.; Zbořil R.; Qu S. In Vivo Theranostics with Near-Infrared-Emitting Carbon Dots—Highly Efficient Photothermal Therapy Based on Passive Targeting after Intravenous Administration. Light Sci. Appl. 2018, 7 (1), 91. 10.1038/s41377-018-0090-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y.; Bai G.; Zeng S.; Hao J. Theranostic Carbon Dots with Innovative NIR-II Emission for in Vivo Renal-Excreted Optical Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 2019, 11 (5), 4737–4744. 10.1021/acsami.8b14877. [DOI] [PubMed] [Google Scholar]
- Li J.; Yang S.; Deng Y.; Chai P.; Yang Y.; He X.; Xie X.; Kang Z.; Ding G.; Zhou H.; Fan X. Emancipating Target-Functionalized Carbon Dots from Autophagy Vesicles for a Novel Visualized Tumor Therapy. Adv. Funct. Mater. 2018, 28 (30), 1800881. 10.1002/adfm.201800881. [DOI] [Google Scholar]
- Ghosh S.; Ghosal K.; Mohammad S. A.; Sarkar K. Dendrimer Functionalized Carbon Quantum Dot for Selective Detection of Breast Cancer and Gene Therapy. Chem. Eng. J. 2019, 373, 468–484. 10.1016/j.cej.2019.05.023. [DOI] [Google Scholar]
- Bao X.; Yuan Y.; Chen J.; Zhang B.; Li D.; Zhou D.; Jing P.; Xu G.; Wang Y.; Holá K.; Shen D.; Wu C.; Song L.; Liu C.; Zbořil R.; Qu S. In Vivo Theranostics with Near-Infrared-Emitting Carbon Dots—Highly Efficient Photothermal Therapy Based on Passive Targeting after Intravenous Administration. Light Sci. Appl. 2018, 7 (1), 91. 10.1038/s41377-018-0090-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mody V.; Siwale R.; Singh A.; Mody H. Introduction to Metallic Nanoparticles. J. Pharm. Bioall Sci. 2010, 2 (4), 282. 10.4103/0975-7406.72127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ren D.; Kratz F.; Wang S.-W. Protein Nanocapsules Containing Doxorubicin as a PH-Responsive Delivery System. Small 2011, 7 (8), 1051–1060. 10.1002/smll.201002242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinheiro A. V.; Han D.; Shih W. M.; Yan H. Challenges and Opportunities for Structural DNA Nanotechnology. Nat. Nanotechnol. 2011, 6 (12), 763–772. 10.1038/nnano.2011.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim J.-W.; Galanzha E. I.; Zaharoff D. A.; Griffin R. J.; Zharov V. P. Nanotheranostics of Circulating Tumor Cells, Infections and Other Pathological Features in Vivo. Mol. Pharmaceutics 2013, 10 (3), 813–830. 10.1021/mp300577s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mura S.; Couvreur P. Nanotheranostics for Personalized Medicine. Adv. Drug Delivery Rev. 2012, 64 (13), 1394–1416. 10.1016/j.addr.2012.06.006. [DOI] [PubMed] [Google Scholar]
- Kim T. H.; Lee S.; Chen X. Nanotheranostics for Personalized Medicine. Expert Review of Molecular Diagnostics 2013, 13 (3), 257–269. 10.1586/erm.13.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muthu M. S.; Mei L.; Feng S.-S. Nanotheranostics: Advanced Nanomedicine for the Integration of Diagnosis and Therapy. Nanomedicine 2014, 9 (9), 1277–1280. 10.2217/nnm.14.83. [DOI] [PubMed] [Google Scholar]
- Pillay V.; Frank D.; Tyagi C.; Tomar L. K.; Choonara Y. E.; du Toit L. C.; Kumar P.; Penny C. Overview of the Role of Nanotechnological Innovations in the Detection and Treatment of Solid Tumors. IJN 2014, 589, 589. 10.2147/IJN.S50941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arachchige M. C. M.; Reshetnyak Y. K.; Andreev O. A. Advanced Targeted Nanomedicine. J. Biotechnol. 2015, 202, 88–97. 10.1016/j.jbiotec.2015.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baetke S. C.; Lammers T.; Kiessling F. Applications of Nanoparticles for Diagnosis and Therapy of Cancer. BJR 2015, 88 (1054), 20150207 10.1259/bjr.20150207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh A.; Sahoo S. K. Magnetic Nanoparticles: A Novel Platform for Cancer Theranostics. Drug Discovery Today 2014, 19 (4), 474–481. 10.1016/j.drudis.2013.10.005. [DOI] [PubMed] [Google Scholar]
- Draz M. S.; Fang B. A.; Zhang P.; Hu Z.; Gu S.; Weng K. C.; Gray J. W.; Chen F. F. Nanoparticle-Mediated Systemic Delivery of SiRNA for Treatment of Cancers and Viral Infections. Theranostics 2014, 4 (9), 872–892. 10.7150/thno.9404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie J.; Liu G.; Eden H. S.; Ai H.; Chen X. Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy. Acc. Chem. Res. 2011, 44 (10), 883–892. 10.1021/ar200044b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoo H.; Moon S.-K.; Hwang T.; Kim Y. S.; Kim J.-H.; Choi S.-W.; Kim J. H. Multifunctional Magnetic Nanoparticles Modified with Polyethylenimine and Folic Acid for Biomedical Theranostics. Langmuir 2013, 29 (20), 5962–5967. 10.1021/la3051302. [DOI] [PubMed] [Google Scholar]
- Mahmoudi K.; Hadjipanayis C. G. The Application of Magnetic Nanoparticles for the Treatment of Brain Tumors. Front. Chem. 2014, 10.3389/fchem.2014.00109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahu N. K.; Singh N. S.; Pradhan L.; Bahadur D. Ce 3+ Sensitized GdPO 4:Tb 3+ with Iron Oxide Nanoparticles: A Potential Biphasic System for Cancer Theranostics. Dalton Trans. 2014, 43 (30), 11728–11738. 10.1039/C4DT00792A. [DOI] [PubMed] [Google Scholar]
- Yang G.; Gong H.; Liu T.; Sun X.; Cheng L.; Liu Z. Two-Dimensional Magnetic WS2@Fe3O4 Nanocomposite with Mesoporous Silica Coating for Drug Delivery and Imaging-Guided Therapy of Cancer. Biomaterials 2015, 60, 62–71. 10.1016/j.biomaterials.2015.04.053. [DOI] [PubMed] [Google Scholar]
- Sahu A.; Choi W. I.; Lee J. H.; Tae G. Graphene Oxide Mediated Delivery of Methylene Blue for Combined Photodynamic and Photothermal Therapy. Biomaterials 2013, 34 (26), 6239–6248. 10.1016/j.biomaterials.2013.04.066. [DOI] [PubMed] [Google Scholar]
- Yu J.; Yin W.; Zheng X.; Tian G.; Zhang X.; Bao T.; Dong X.; Wang Z.; Gu Z.; Ma X.; Zhao Y. Smart MoS 2 /Fe 3 O 4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics 2015, 5 (9), 931–945. 10.7150/thno.11802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medarova Z.; Pham W.; Farrar C.; Petkova V.; Moore A. In Vivo Imaging of SiRNA Delivery and Silencing in Tumors. Nat. Med. 2007, 13 (3), 372–377. 10.1038/nm1486. [DOI] [PubMed] [Google Scholar]
- Saad M.; Garbuzenko O. B.; Ber E.; Chandna P.; Khandare J. J.; Pozharov V. P.; Minko T. Receptor Targeted Polymers, Dendrimers, Liposomes: Which Nanocarrier Is the Most Efficient for Tumor-Specific Treatment and Imaging?. J. Controlled Release 2008, 130 (2), 107–114. 10.1016/j.jconrel.2008.05.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chavda V. P.; Balar P. C.; Patel S. B. Nanotheranostics-Based Management of Head and Neck Cancer. Nanotheranostics 2023, 7 (2), 202–209. 10.7150/ntno.81724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong S.-F. Cetuximab: An Epidermal Growth Factor Receptor Monoclonal Antibody for the Treatment of Colorectal Cancer. Clinical Therapeutics 2005, 27 (6), 684–694. 10.1016/j.clinthera.2005.06.003. [DOI] [PubMed] [Google Scholar]
- Conde J.; Bao C.; Cui D.; Baptista P. V.; Tian F. Antibody–Drug Gold Nanoantennas with Raman Spectroscopic Fingerprints for in Vivo Tumour Theranostics. J. Controlled Release 2014, 183, 87–93. 10.1016/j.jconrel.2014.03.045. [DOI] [PubMed] [Google Scholar]
- Conde J.; Dias J. T.; GrazÃo V.; Moros M.; Baptista P. V.; de la Fuente J. M. Revisiting 30 Years of Biofunctionalization and Surface Chemistry of Inorganic Nanoparticles for Nanomedicine. Front. Chem. 2014, 10.3389/fchem.2014.00048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ha M.; Kim J.-H.; You M.; Li Q.; Fan C.; Nam J.-M. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem. Rev. 2019, 119 (24), 12208–12278. 10.1021/acs.chemrev.9b00234. [DOI] [PubMed] [Google Scholar]
- Sahoo A. K.; Banerjee S.; Ghosh S. S.; Chattopadhyay A. Simultaneous RGB Emitting Au Nanoclusters in Chitosan Nanoparticles for Anticancer Gene Theranostics. ACS Appl. Mater. Interfaces 2014, 6 (1), 712–724. 10.1021/am4051266. [DOI] [PubMed] [Google Scholar]
- Chan G. G.; Koch C. M.; Connors L. H. Blood Proteomic Profiling in Inherited (ATTRm) and Acquired (ATTRwt) Forms of Transthyretin-Associated Cardiac Amyloidosis. J. Proteome Res. 2017, 16 (4), 1659–1668. 10.1021/acs.jproteome.6b00998. [DOI] [PubMed] [Google Scholar]
- Khan S.; Hussain A.; Fahimi H.; Aliakbari F.; Haj Bloukh S.; Edis Z.; Mahdi Nejadi Babadaei M.; Izadi Z.; Shiri Varnamkhasti B.; Jahanshahi F.; Lin Y.; Hao X.; Hasan Khan R.; Rasti B.; Vaghar-Lahijani G.; Hua L.; Derakhshankhah H.; Sharifi M.; Falahati M. A Review on the Therapeutic Applications of Aptamers and Aptamer-Conjugated Nanoparticles in Cancer, Inflammatory and Viral Diseases. Arabian Journal of Chemistry 2022, 15 (2), 103626 10.1016/j.arabjc.2021.103626. [DOI] [Google Scholar]
- Mukherjee S.; Chowdhury D.; Kotcherlakota R.; Patra S.; B V.; Bhadra M. P.; Sreedhar B.; Patra C. R. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System). Theranostics 2014, 4 (3), 316–335. 10.7150/thno.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Natarajan A.; Venugopal S. K.; DeNardo S. J.; Zern M. A.. Breast Cancer Targeting Novel MicroRNA-Nanoparticles for Imaging; Azar F. S., Intes X., Eds.; San Jose, CA, 2009; p 71710N. 10.1117/12.812186. [DOI] [Google Scholar]
- Zhu J.; Zheng L.; Wen S.; Tang Y.; Shen M.; Zhang G.; Shi X. Targeted Cancer Theranostics Using Alpha-Tocopheryl Succinate-Conjugated Multifunctional Dendrimer-Entrapped Gold Nanoparticles. Biomaterials 2014, 35 (26), 7635–7646. 10.1016/j.biomaterials.2014.05.046. [DOI] [PubMed] [Google Scholar]
- Viswambari Devi R.; Doble M.; Verma R. S. Nanomaterials for Early Detection of Cancer Biomarker with Special Emphasis on Gold Nanoparticles in Immunoassays/Sensors. Biosens. Bioelectron. 2015, 68, 688–698. 10.1016/j.bios.2015.01.066. [DOI] [PubMed] [Google Scholar]
- Wang C.-F.; Sarparanta M. P.; Mäkilä E. M.; Hyvönen M. L. K.; Laakkonen P. M.; Salonen J. J.; Hirvonen J. T.; Airaksinen A. J.; Santos H. A. Multifunctional Porous Silicon Nanoparticles for Cancer Theranostics. Biomaterials 2015, 48, 108–118. 10.1016/j.biomaterials.2015.01.008. [DOI] [PubMed] [Google Scholar]
- Li L.; Guan Y.; Liu H.; Hao N.; Liu T.; Meng X.; Fu C.; Li Y.; Qu Q.; Zhang Y.; Ji S.; Chen L.; Chen D.; Tang F. Silica Nanorattle–Doxorubicin-Anchored Mesenchymal Stem Cells for Tumor-Tropic Therapy. ACS Nano 2011, 5 (9), 7462–7470. 10.1021/nn202399w. [DOI] [PubMed] [Google Scholar]
- Ferreira C. A.; Goel S.; Ehlerding E. B.; Rosenkrans Z. T.; Jiang D.; Sun T.; Aluicio-Sarduy E.; Engle J. W.; Ni D.; Cai W. Ultrasmall Porous Silica Nanoparticles with Enhanced Pharmacokinetics for Cancer Theranostics. Nano Lett. 2021, 21 (11), 4692–4699. 10.1021/acs.nanolett.1c00895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan M.-H.; Lin H.-M. Preparation and Identification of Multifunctional Mesoporous Silica Nanoparticles for in Vitro and in Vivo Dual-Mode Imaging, Theranostics, and Targeted Tracking. Biomaterials 2015, 46, 149–158. 10.1016/j.biomaterials.2014.12.034. [DOI] [PubMed] [Google Scholar]
- He Q.; Ma M.; Wei C.; Shi J. Mesoporous Carbon@silicon-Silica Nanotheranostics for Synchronous Delivery of Insoluble Drugs and Luminescence Imaging. Biomaterials 2012, 33 (17), 4392–4402. 10.1016/j.biomaterials.2012.02.056. [DOI] [PubMed] [Google Scholar]
- Hong Y.-L.; Liu Z.; Wang L.; Zhou T.; Ma W.; Xu C.; Feng S.; Chen L.; Chen M.-L.; Sun D.-M.; Chen X.-Q.; Cheng H.-M.; Ren W. Chemical Vapor Deposition of Layered Two-Dimensional MoSi 2 N 4 Materials. Science 2020, 369 (6504), 670–674. 10.1126/science.abb7023. [DOI] [PubMed] [Google Scholar]
- Miao W.; Shim G.; Kim G.; Lee S.; Lee H.-J.; Kim Y. B.; Byun Y.; Oh Y.-K. Image-Guided Synergistic Photothermal Therapy Using Photoresponsive Imaging Agent-Loaded Graphene-Based Nanosheets. J. Controlled Release 2015, 211, 28–36. 10.1016/j.jconrel.2015.05.280. [DOI] [PubMed] [Google Scholar]
- Yang H.-W.; Huang C.-Y.; Lin C.-W.; Liu H.-L.; Huang C.-W.; Liao S.-S.; Chen P.-Y.; Lu Y.-J.; Wei K.-C.; Ma C.-C. M. Gadolinium-Functionalized Nanographene Oxide for Combined Drug and MicroRNA Delivery and Magnetic Resonance Imaging. Biomaterials 2014, 35 (24), 6534–6542. 10.1016/j.biomaterials.2014.04.057. [DOI] [PubMed] [Google Scholar]
- Taratula O.; Taratula O.; Patel M.; Schumann C.; Naleway M.; He H.; Pang A. Phthalocyanine-Loaded Graphene Nanoplatform For Imaging-Guided Combinatorial Phototherapy. IJN 2015, 2347. 10.2147/IJN.S81097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma H.; Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. IJMS 2020, 21 (17), 6280. 10.3390/ijms21176280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luk B. T.; Fang R. H.; Zhang L. Lipid- and Polymer-Based Nanostructures for Cancer Theranostics. Theranostics 2012, 2 (12), 1117–1126. 10.7150/thno.4381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torchilin V. Multifunctional and Stimuli-Sensitive Pharmaceutical Nanocarriers. Eur. J. Pharm. Biopharm. 2009, 71 (3), 431–444. 10.1016/j.ejpb.2008.09.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shmeeda H.; Amitay Y.; Gorin J.; Tzemach D.; Mak L.; Ogorka J.; Kumar S.; Zhang J. A.; Gabizon A. Delivery of Zoledronic Acid Encapsulated in Folate-Targeted Liposome Results in Potent in Vitro Cytotoxic Activity on Tumor Cells. J. Controlled Release 2010, 146 (1), 76–83. 10.1016/j.jconrel.2010.04.028. [DOI] [PubMed] [Google Scholar]
- Xu Z.; Chen L.; Gu W.; Gao Y.; Lin L.; Zhang Z.; Xi Y.; Li Y. The Performance of Docetaxel-Loaded Solid Lipid Nanoparticles Targeted to Hepatocellular Carcinoma. Biomaterials 2009, 30 (2), 226–232. 10.1016/j.biomaterials.2008.09.014. [DOI] [PubMed] [Google Scholar]
- Yoo H. S.; Park T. G. Folate Receptor Targeted Biodegradable Polymeric Doxorubicin Micelles. J. Controlled Release 2004, 96 (2), 273–283. 10.1016/j.jconrel.2004.02.003. [DOI] [PubMed] [Google Scholar]
- Khandare J. J.; Jayant S.; Singh A.; Chandna P.; Wang Y.; Vorsa N.; Minko T. Dendrimer Versus Linear Conjugate: Influence of Polymeric Architecture on the Delivery and Anticancer Effect of Paclitaxel. Bioconjugate Chem. 2006, 17 (6), 1464–1472. 10.1021/bc060240p. [DOI] [PubMed] [Google Scholar]
- Enlow E. M.; Luft J. C.; Napier M. E.; DeSimone J. M. Potent Engineered PLGA Nanoparticles by Virtue of Exceptionally High Chemotherapeutic Loadings. Nano Lett. 2011, 11 (2), 808–813. 10.1021/nl104117p. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L.; Zhou H.; Belzile O.; Thorpe P.; Zhao D. Phosphatidylserine-Targeted Bimodal Liposomal Nanoparticles for in Vivo Imaging of Breast Cancer in Mice. J. Controlled Release 2014, 183, 114–123. 10.1016/j.jconrel.2014.03.043. [DOI] [PubMed] [Google Scholar]
- Parhi P.; Sahoo S. K. Trastuzumab Guided Nanotheranostics: A Lipid Based Multifunctional Nanoformulation for Targeted Drug Delivery and Imaging in Breast Cancer Therapy. J. Colloid Interface Sci. 2015, 451, 198–211. 10.1016/j.jcis.2015.03.049. [DOI] [PubMed] [Google Scholar]
- Wilhelm S. M.; Adnane L.; Newell P.; Villanueva A.; Llovet J. M.; Lynch M. Preclinical Overview of Sorafenib, a Multikinase Inhibitor That Targets Both Raf and VEGF and PDGF Receptor Tyrosine Kinase Signaling. Molecular Cancer Therapeutics 2008, 7 (10), 3129–3140. 10.1158/1535-7163.MCT-08-0013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du Y.; Zhang Q.; Jing L.; liang X.; Chi C.; Li Y.; Yang X.; Dai Z.; Tian J. GX1-Conjugated Poly(Lactic Acid) Nanoparticles Encapsulating Endostar for Improved in Vivo Anticolorectal Cancer Treatment. IJN 2015, 3791. 10.2147/IJN.S82029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding H.; Wu F. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics. Theranostics 2012, 2 (11), 1040–1053. 10.7150/thno.4652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moraes J.; Ohno K.; Maschmeyer T.; Perrier S. Monodisperse, Charge-Stabilized, Core–Shell Particles via Silica-Supported Reversible Addition–Fragmentation Chain Transfer Polymerization for Cell Imaging. Chem. Mater. 2013, 25 (17), 3522–3527. 10.1021/cm401957m. [DOI] [Google Scholar]
- Pan U. N.; Khandelia R.; Sanpui P.; Das S.; Paul A.; Chattopadhyay A. Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9 (23), 19495–19501. 10.1021/acsami.6b06099. [DOI] [PubMed] [Google Scholar]
- Yang T.; Wang Y.; Ke H.; Wang Q.; Lv X.; Wu H.; Tang Y.; Yang X.; Chen C.; Zhao Y.; Chen H. Protein-Nanoreactor-Assisted Synthesis of Semiconductor Nanocrystals for Efficient Cancer Theranostics. Adv. Mater. 2016, 28 (28), 5923–5930. 10.1002/adma.201506119. [DOI] [PubMed] [Google Scholar]
- Rong P.; Huang P.; Liu Z.; Lin J.; Jin A.; Ma Y.; Niu G.; Yu L.; Zeng W.; Wang W.; Chen X. Protein-Based Photothermal Theranostics for Imaging-Guided Cancer Therapy. Nanoscale 2015, 7 (39), 16330–16336. 10.1039/C5NR04428F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Q.; Sun Q.; Molino N. M.; Wang S.-W.; Boder E. T.; Chen W. Sortase A-Mediated Multi-Functionalization of Protein Nanoparticles. Chem. Commun. 2015, 51 (60), 12107–12110. 10.1039/C5CC03769G. [DOI] [PubMed] [Google Scholar]
- Wang Z.; Huang P.; Jacobson O.; Wang Z.; Liu Y.; Lin L.; Lin J.; Lu N.; Zhang H.; Tian R.; Niu G.; Liu G.; Chen X. Biomineralization-Inspired Synthesis of Copper Sulfide–Ferritin Nanocages as Cancer Theranostics. ACS Nano 2016, 10 (3), 3453–3460. 10.1021/acsnano.5b07521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim S.; Peng T.; Sana B.. Protein Cages as Theranostic Agent Carriers. In World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China; Long M., Ed.; IFMBE Proceedings; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; Vol. 39, pp 321–324. 10.1007/978-3-642-29305-4_86. [DOI] [Google Scholar]
- Ren D.; Kratz F.; Wang S.-W. Engineered Drug-Protein Nanoparticle Complexes for Folate Receptor Targeting. Biochemical Engineering Journal 2014, 89, 33–41. 10.1016/j.bej.2013.09.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L.; Fang C. J.; Ryan J. C.; Niemi E. C.; Lebrón J. A.; Björkman P. J.; Arase H.; Torti F. M.; Torti S. V.; Nakamura M. C.; Seaman W. E. Binding and Uptake of H-Ferritin Are Mediated by Human Transferrin Receptor-1. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (8), 3505–3510. 10.1073/pnas.0913192107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tesfamariam B. Bioresorbable Vascular Scaffolds: Biodegradation, Drug Delivery and Vascular Remodeling. Pharmacol. Res. 2016, 107, 163–171. 10.1016/j.phrs.2016.03.020. [DOI] [PubMed] [Google Scholar]
- Luo H.; Shi J.; Jin H.; Fan D.; Lu L.; Wang F.; Zhang Z. An 125I-Labeled Octavalent Peptide Fluorescent Nanoprobe for Tumor-Homing Imaging in Vivo. Biomaterials 2012, 33 (19), 4843–4850. 10.1016/j.biomaterials.2012.03.049. [DOI] [PubMed] [Google Scholar]
- Okarvi S. M. Peptide-Based Radiopharmaceuticals: Future Tools for Diagnostic Imaging of Cancers and Other Diseases. Med. Res. Rev. 2004, 24 (3), 357–397. 10.1002/med.20002. [DOI] [PubMed] [Google Scholar]
- Ng K. K.; Lovell J. F.; Zheng G. Lipoprotein-Inspired Nanoparticles for Cancer Theranostics. Acc. Chem. Res. 2011, 44 (10), 1105–1113. 10.1021/ar200017e. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Q.; Wang X.; Wang C.; Feng L.; Li Y.; Liu Z. Drug-Induced Self-Assembly of Modified Albumins as Nano-Theranostics for Tumor-Targeted Combination Therapy. ACS Nano 2015, 9 (5), 5223–5233. 10.1021/acsnano.5b00640. [DOI] [PubMed] [Google Scholar]
- Lohcharoenkal W.; Wang L.; Chen Y. C.; Rojanasakul Y. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. BioMed. Research International 2014, 2014, 1–12. 10.1155/2014/180549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elzoghby A. O.; Samy W. M.; Elgindy N. A. Protein-Based Nanocarriers as Promising Drug and Gene Delivery Systems. J. Controlled Release 2012, 161 (1), 38–49. 10.1016/j.jconrel.2012.04.036. [DOI] [PubMed] [Google Scholar]
- Chen H.; Colvin D. C.; Qi B.; Moore T.; He J.; Mefford O. T.; Alexis F.; Gore J. C.; Anker J. N. Magnetic and Optical Properties of Multifunctional Core-Shell Radioluminescence Nanoparticles. J. Mater. Chem. 2012, 22 (25), 12802–12809. 10.1039/c2jm15444g. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu T.; Shi S.; Liang C.; Shen S.; Cheng L.; Wang C.; Song X.; Goel S.; Barnhart T. E.; Cai W.; Liu Z. Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy. ACS Nano 2015, 9 (1), 950–960. 10.1021/nn506757x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loiseau A.; Asila V.; Boitel-Aullen G.; Lam M.; Salmain M.; Boujday S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors (Basel) 2019, 9 (2), 78. 10.3390/bios9020078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu W.; Zhang J.; Hou J.; Aziguli H.; Zhang Q.; Jiang H. Self-Assembly of Au–Ag Alloy Hollow Nanochains for Enhanced Plasmon-Driven Surface-Enhanced Raman Scattering. Nanomaterials (Basel) 2022, 12 (8), 1244. 10.3390/nano12081244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanwar S.; Kaur V.; Kaur G.; Sen T. Broadband SERS Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing. J. Phys. Chem. Lett. 2021, 12 (33), 8141–8150. 10.1021/acs.jpclett.1c02272. [DOI] [PubMed] [Google Scholar]
- Kim W.-G.; Lee J.-M.; Yang Y.; Kim H.; Devaraj V.; Kim M.; Jeong H.; Choi E.-J.; Yang J.; Jang Y.; Badloe T.; Lee D.; Rho J.; Kim J. T.; Oh J.-W. Three-Dimensional Plasmonic Nanocluster-Driven Light-Matter Interaction for Photoluminescence Enhancement and Picomolar-Level Biosensing. Nano Lett. 2022, 22 (12), 4702–4711. 10.1021/acs.nanolett.2c00790. [DOI] [PubMed] [Google Scholar]
- Kang S.; Lee S.; Park S. IRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020, 12 (9), 1906. 10.3390/polym12091906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C.-F.; Sarparanta M. P.; Mäkilä E. M.; Hyvönen M. L. K.; Laakkonen P. M.; Salonen J. J.; Hirvonen J. T.; Airaksinen A. J.; Santos H. A. Multifunctional Porous Silicon Nanoparticles for Cancer Theranostics. Biomaterials 2015, 48, 108–118. 10.1016/j.biomaterials.2015.01.008. [DOI] [PubMed] [Google Scholar]
- Wu Z.-Y.; Lee C.-C.; Lin H.-M. Hyaluronidase-Responsive Mesoporous Silica Nanoparticles with Dual-Imaging and Dual-Target Function. Cancers (Basel) 2019, 11 (5), 697. 10.3390/cancers11050697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Živojević K.; Mladenović M.; Djisalov M.; Mundzic M.; Ruiz-Hernandez E.; Gadjanski I.; Knežević N. Ž. Advanced Mesoporous Silica Nanocarriers in Cancer Theranostics and Gene Editing Applications. J. Controlled Release 2021, 337, 193–211. 10.1016/j.jconrel.2021.07.029. [DOI] [PubMed] [Google Scholar]
- Usman M. S.; Hussein M. Z.; Fakurazi S.; Ahmad Saad F. F. Gadolinium-Based Layered Double Hydroxide and Graphene Oxide Nano-Carriers for Magnetic Resonance Imaging and Drug Delivery. Chem. Cent J. 2017, 11, 47. 10.1186/s13065-017-0275-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lage T.; Rodrigues R. O.; Catarino S.; Gallo J.; Bañobre-López M.; Minas G. Graphene-Based Magnetic Nanoparticles for Theranostics: An Overview for Their Potential in Clinical Application. Nanomaterials (Basel) 2021, 11 (5), 1073. 10.3390/nano11051073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang H.-W.; Huang C.-Y.; Lin C.-W.; Liu H.-L.; Huang C.-W.; Liao S.-S.; Chen P.-Y.; Lu Y.-J.; Wei K.-C.; Ma C.-C. M. Gadolinium-Functionalized Nanographene Oxide for Combined Drug and MicroRNA Delivery and Magnetic Resonance Imaging. Biomaterials 2014, 35 (24), 6534–6542. 10.1016/j.biomaterials.2014.04.057. [DOI] [PubMed] [Google Scholar]
- Taratula O.; Patel M.; Schumann C.; Naleway M. A.; Pang A. J.; He H.; Taratula O. Phthalocyanine-Loaded Graphene Nanoplatform for Imaging-Guided Combinatorial Phototherapy. Int. J. Nanomedicine 2015, 10, 2347–2362. 10.2147/IJN.S81097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nabil G.; Bhise K.; Sau S.; Atef M.; El-Banna H. A.; Iyer A. K. Nano-Engineered Delivery Systems for Cancer Imaging and Therapy: Recent Advances, Future Direction and Patent Evaluation. Drug Discov Today 2019, 24 (2), 462–491. 10.1016/j.drudis.2018.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L.; Zhou H.; Belzile O.; Thorpe P.; Zhao D. Phosphatidylserine-Targeted Bimodal Liposomal Nanoparticles for in Vivo Imaging of Breast Cancer in Mice. J. Controlled Release 2014, 183, 114–123. 10.1016/j.jconrel.2014.03.043. [DOI] [PubMed] [Google Scholar]
- Shellaiah M.; Sun K.-W. Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. Biosensors (Basel) 2022, 12 (7), 550. 10.3390/bios12070550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang B.; Jia X.; Ji T.; Zhou M.; He J.; Wang K.; Tian J.; Yan X.; Fan K. Ferritin Nanocages for Early Theranostics of Tumors via Inflammation-Enhanced Active Targeting. Sci. China Life Sci. 2022, 65 (2), 328–340. 10.1007/s11427-021-1976-0. [DOI] [PubMed] [Google Scholar]
- Rong P.; Huang P.; Liu Z.; Lin J.; Jin A.; Ma Y.; Niu G.; Yu L.; Zeng W.; Wang W.; Chen X. Protein-Based Photothermal Theranostics for Imaging-Guided Cancer Therapy. Nanoscale 2015, 7 (39), 16330–16336. 10.1039/C5NR04428F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilmes L. J.; Pallavicini M. G.; Fleming L. M.; Gibbs J.; Wang D.; Li K.-L.; Partridge S. C.; Henry R. G.; Shalinsky D. R.; Hu-Lowe D.; Park J. W.; McShane T. M.; Lu Y.; Brasch R. C.; Hylton N. M. AG-013736, a Novel Inhibitor of VEGF Receptor Tyrosine Kinases, Inhibits Breast Cancer Growth and Decreases Vascular Permeability as Detected by Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Magn. Reson. Imaging 2007, 25 (3), 319–327. 10.1016/j.mri.2006.09.041. [DOI] [PubMed] [Google Scholar]
- Zhang X.; Dong Y.; Zeng X.; Liang X.; Li X.; Tao W.; Chen H.; Jiang Y.; Mei L.; Feng S.-S. The Effect of Autophagy Inhibitors on Drug Delivery Using Biodegradable Polymer Nanoparticles in Cancer Treatment. Biomaterials 2014, 35 (6), 1932–1943. 10.1016/j.biomaterials.2013.10.034. [DOI] [PubMed] [Google Scholar]
- Das M.; Datir S. R.; Singh R. P.; Jain S. Augmented Anticancer Activity of a Targeted, Intracellularly Activatable, Theranostic Nanomedicine Based on Fluorescent and Radiolabeled, Methotrexate-Folic Acid-Multiwalled Carbon Nanotube Conjugate. Mol. Pharmaceutics 2013, 10 (7), 2543–2557. 10.1021/mp300701e. [DOI] [PubMed] [Google Scholar]
- Xian F.; Wu J.; Zhong L.; Xu G. Efficacy and Safety of PD1/PDL1 Inhibitors Combined with Radiotherapy and Anti-Angiogenic Therapy for Solid Tumors: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 2023, 102 (10), e33204 10.1097/MD.0000000000033204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szczygieł A.; Węgierek-Ciura K.; Wróblewska A.; Mierzejewska J.; Rossowska J.; Szermer-Olearnik B.; Świtalska M.; Anger-Góra N.; Goszczyński T. M.; Pajtasz-Piasecka E. Combined Therapy with Methotrexate Nanoconjugate and Dendritic Cells with Downregulated IL-10R Expression Modulates the Tumor Microenvironment and Enhances the Systemic Anti-Tumor Immune Response in MC38 Murine Colon Carcinoma. Frontiers in Immunology 2023, 10.3389/fimmu.2023.1155377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theelen W. S. M. E.; Peulen H. M. U.; Lalezari F.; van der Noort V.; de Vries J. F.; Aerts J. G. J. V.; Dumoulin D. W.; Bahce I.; Niemeijer A.-L. N.; de Langen A. J.; Monkhorst K.; Baas P. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non–Small Cell Lung Cancer. JAMA Oncol 2019, 5 (9), 1276–1282. 10.1001/jamaoncol.2019.1478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Z.; Liu X.; Chen D.; Yu J. Radiotherapy Combined with Immunotherapy: The Dawn of Cancer Treatment. Signal Transduct Target Ther 2022, 7, 258. 10.1038/s41392-022-01102-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu S.; Wang Y.; He P.; Shao B.; Liu F.; Xiang Z.; Yang T.; Zeng Y.; He T.; Ma J.; Wang X.; Liu L. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front Oncol 2022, 12, 809304 10.3389/fonc.2022.809304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu M.; Kong Y.; Xing P.; Chen R.; Ma Y.; Shan C.; LiYuan Z. A Multicenter, Single-Arm, Phase II Trial of RC48-ADC Combined with Radiotherapy, PD-1/PD-L1 Inhibitor Sequential GM-CSF and IL-2 (PRaG3.0 Regimen) for the Treatment of HER2-Expressing Advanced Solid Tumors. International Journal of Radiation Oncology*Biology*Physics 2022, 114, e428. 10.1016/j.ijrobp.2022.07.1632. [DOI] [Google Scholar]
- Zhang B.; Qi L.; Wang X.; Xu J.; Liu Y.; Mu L.; Wang X.; Bai L.; Huang J. Phase II Clinical Trial Using Camrelizumab Combined with Apatinib and Chemotherapy as the First-Line Treatment of Advanced Esophageal Squamous Cell Carcinoma. Cancer Commun. (Lond) 2020, 40 (12), 711–720. 10.1002/cac2.12119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu M.; Xing P.; Kong Y.; Zhang C.; Zhao X.; Zhang J.; Zhang L. PD-1 Inhibitor Combined with Hypofractionated Radiotherapy and GM-CSF with or without IL-2 (PRaG Regimens) Rechallenge for Acquiring Resistance to PD-1/PD-L1 Inhibitor in Advanced Solid Tumors. International Journal of Radiation Oncology*Biology*Physics 2022, 114, e427–e428. 10.1016/j.ijrobp.2022.07.1631. [DOI] [Google Scholar]
- Corroyer-Dulmont A.; Jaudet C.; Frelin A.-M.; Fantin J.; Weyts K.; Vallis K. A.; Falzone N.; Sibson N. R.; Chérel M.; Kraeber-Bodéré F.; Batalla A.; Bardet S.; Bernaudin M.; Valable S. Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice. Front Oncol 2021, 11, 714514 10.3389/fonc.2021.714514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roulston A.; Zimmermann M.; Papp R.; Skeldon A.; Pellerin C.; Dumas-Bérube É.; Dumais V.; Dorich S.; Fader L. D.; Fournier S.; Li L.; Leclaire M.-E.; Yin S. Y.; Chefson A.; Alam H.; Yang W.; Fugère-Desjardins C.; Vignini-Hammond S.; Skorey K.; Mulani A.; Rimkunas V.; Veloso A.; Hamel M.; Stocco R.; Mamane Y.; Li Z.; Young J. T. F.; Zinda M.; Black W. C. RP-3500: A Novel, Potent, and Selective ATR Inhibitor That Is Effective in Preclinical Models as a Monotherapy and in Combination with PARP Inhibitors. Mol. Cancer Ther 2022, 21 (2), 245–256. 10.1158/1535-7163.MCT-21-0615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarus H. M.; Ragsdale C. E.; Gale R. P.; Lyman G. H. Sargramostim (Rhu GM-CSF) as Cancer Therapy (Systematic Review) and An Immunomodulator. A Drug Before Its Time?. Front Immunol 2021, 12, 706186 10.3389/fimmu.2021.706186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durant S. T.; Zheng L.; Wang Y.; Chen K.; Zhang L.; Zhang T.; Yang Z.; Riches L.; Trinidad A. G.; Fok J. H. L.; Hunt T.; Pike K. G.; Wilson J.; Smith A.; Colclough N.; Reddy V. P.; Sykes A.; Janefeldt A.; Johnström P.; Varnäs K.; Takano A.; Ling S.; Orme J.; Stott J.; Roberts C.; Barrett I.; Jones G.; Roudier M.; Pierce A.; Allen J.; Kahn J.; Sule A.; Karlin J.; Cronin A.; Chapman M.; Valerie K.; Illingworth R.; Pass M. The Brain-Penetrant Clinical ATM Inhibitor AZD1390 Radiosensitizes and Improves Survival of Preclinical Brain Tumor Models. Sci. Adv. 2018, 4 (6), eaat1719 10.1126/sciadv.aat1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordhandas S. B.; Manning-Geist B.; Henson C.; Iyer G.; Gardner G. J.; Sonoda Y.; Moore K. N.; Aghajanian C.; Chui M. H.; Grisham R. N. Pre-Clinical Activity of the Oral DNA-PK Inhibitor, Peposertib (M3814), Combined with Radiation in Xenograft Models of Cervical Cancer. Sci. Rep 2022, 12, 974. 10.1038/s41598-021-04618-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ippen F. M.; Alvarez-Breckenridge C. A.; Kuter B. M.; Fink A. L.; Bihun I. V.; Lastrapes M.; Penson T.; Schmidt S. P.; Wojtkiewicz G. R.; Ning J.; Subramanian M.; Giobbie-Hurder A.; Martinez-Lage M.; Carter S. L.; Cahill D. P.; Wakimoto H.; Brastianos P. K. The Dual PI3K/MTOR-Pathway Inhibitor GDC-0084 Achieves Antitumor Activity in PIK3CA-Mutant Breast Cancer Brain Metastases. Clin. Cancer Res. 2019, 25 (11), 3374–3383. 10.1158/1078-0432.CCR-18-3049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jo S. D.; Ku S. H.; Won Y.-Y.; Kim S. H.; Kwon I. C. Targeted Nanotheranostics for Future Personalized Medicine: Recent Progress in Cancer Therapy. Theranostics 2016, 6 (9), 1362–1377. 10.7150/thno.15335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X.; Zhang W.; Liu L.; Zhu Z.; Ouyang G.; An Y.; Zhao C.; Yang C. J. In Vitro Selection of DNA Aptamers for Metastatic Breast Cancer Cell Recognition and Tissue Imaging. Anal. Chem. 2014, 86 (13), 6596–6603. 10.1021/ac501205q. [DOI] [PubMed] [Google Scholar]
- Camorani S.; Passariello M.; Agnello L.; Esposito S.; Collina F.; Cantile M.; Di Bonito M.; Ulasov I. V.; Fedele M.; Zannetti A.; De Lorenzo C.; Cerchia L. Aptamer Targeted Therapy Potentiates Immune Checkpoint Blockade in Triple-Negative Breast Cancer. Journal of Experimental & Clinical Cancer Research 2020, 39 (1), 180. 10.1186/s13046-020-01694-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camorani S.; Hill B. S.; Collina F.; Gargiulo S.; Napolitano M.; Cantile M.; Di Bonito M.; Botti G.; Fedele M.; Zannetti A.; Cerchia L. Targeted Imaging and Inhibition of Triple-Negative Breast Cancer Metastases by a PDGFRβ Aptamer. Theranostics 2018, 8 (18), 5178–5199. 10.7150/thno.27798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song Y.; Zhu Z.; An Y.; Zhang W.; Zhang H.; Liu D.; Yu C.; Duan W.; Yang C. J. Selection of DNA Aptamers against Epithelial Cell Adhesion Molecule for Cancer Cell Imaging and Circulating Tumor Cell Capture. Anal. Chem. 2013, 85 (8), 4141–4149. 10.1021/ac400366b. [DOI] [PubMed] [Google Scholar]
- Guu T. S. Y.; Liu Z.; Ye Q.; Mata D. A.; Li K.; Yin C.; Zhang J.; Tao Y. J. Structure of the Hepatitis E Virus-like Particle Suggests Mechanisms for Virus Assembly and Receptor Binding. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (31), 12992–12997. 10.1073/pnas.0904848106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cortes-Perez N. G.; Sapin C.; Jaffrelo L.; Daou S.; Grill J. P.; Langella P.; Seksik P.; Beaugerie L.; Chwetzoff S.; Trugnan G. Rotavirus-Like Particles: A Novel Nanocarrier for the Gut. Journal of Biomedicine and Biotechnology 2010, 2010, 1–10. 10.1155/2010/317545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Pasquale V.; Quiccione M. S.; Tafuri S.; Avallone L.; Pavone L. M. Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. IJMS 2021, 22 (12), 6574. 10.3390/ijms22126574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashley C. E.; Carnes E. C.; Phillips G. K.; Durfee P. N.; Buley M. D.; Lino C. A.; Padilla D. P.; Phillips B.; Carter M. B.; Willman C. L.; Brinker C. J.; Caldeira J. D. C.; Chackerian B.; Wharton W.; Peabody D. S. Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles. ACS Nano 2011, 5 (7), 5729–5745. 10.1021/nn201397z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claus A.; Sweeney A.; Sankepalle D. M.; Li B.; Wong D.; Xavierselvan M.; Mallidi S. 3D Ultrasound-Guided Photoacoustic Imaging to Monitor the Effects of Suboptimal Tyrosine Kinase Inhibitor Therapy in Pancreatic Tumors. Front Oncol 2022, 12, 915319 10.3389/fonc.2022.915319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spring B. Q.; Bryan Sears R.; Zheng L. Z.; Mai Z.; Watanabe R.; Sherwood M. E.; Schoenfeld D. A.; Pogue B. W.; Pereira S. P.; Villa E.; Hasan T. A Photoactivable Multi-Inhibitor Nanoliposome for Tumour Control and Simultaneous Inhibition of Treatment Escape Pathways. Nat. Nanotechnol. 2016, 11 (4), 378–387. 10.1038/nnano.2015.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi J.; Su Y.; Liu W.; Chang J.; Zhang Z. A Nanoliposome-Based Photoactivable Drug Delivery System for Enhanced Cancer Therapy and Overcoming Treatment Resistance. IJN 2017, 12, 8257–8275. 10.2147/IJN.S143776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Y.-X.; Jia H.-R.; Duan Q.-Y.; Liu X.; Yang J.; Liu Y.; Wu F.-G. Photosensitizer-Doped and Plasma Membrane-Responsive Liposomes for Nuclear Drug Delivery and Multidrug Resistance Reversal. ACS Appl. Mater. Interfaces 2020, 12 (33), 36882–36894. 10.1021/acsami.0c09110. [DOI] [PubMed] [Google Scholar]
- Rabaan A. A.; Bukhamsin R.; AlSaihati H.; Alshamrani S. A.; AlSihati J.; Al-Afghani H. M.; Alsubki R. A.; Abuzaid A. A.; Al-Abdulhadi S.; Aldawood Y.; Alsaleh A. A.; Alhashem Y. N.; Almatouq J. A.; Emran T. B.; Al-Ahmed S. H.; Nainu F.; Mohapatra R. K. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules 2022, 27 (24), 8659. 10.3390/molecules27248659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu H.; Li B.; Yu Chan C.; Low Qian Ling B.; Tor J.; Yi Oh X.; Jiang W.; Ye E.; Li Z.; Jun Loh X. Advances in Single-Component Inorganic Nanostructures for Photoacoustic Imaging Guided Photothermal Therapy. Adv. Drug Delivery Rev. 2023, 192, 114644 10.1016/j.addr.2022.114644. [DOI] [PubMed] [Google Scholar]
- Yang C.; Wang K.; Tian S.; Mo L.; Lin W. Functionalized Photosensitive Metal-Organic Framework as a Theranostic Nanoplatform for Turn-on Detection of MicroRNA and Photodynamic Therapy. Anal. Chim. Acta 2023, 1239, 340689 10.1016/j.aca.2022.340689. [DOI] [PubMed] [Google Scholar]
- Thomas S. C.; Kim J.-W.; Pauletti G. M.; Hassett D. J.; Kotagiri N. Exosomes: Biological Pharmaceutical Nanovectors for Theranostics. Frontiers in Bioengineering and Biotechnology 2022, 10.3389/fbioe.2021.808614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hakimi F.; Khoshkam M.; Sadighian S.; Ramazani A. A Facile and High-Sensitive Bio-Sensing of the V617F Mutation in JAK2 Gene by GSH-CdTe-QDs FRET-Based Sensor. Heliyon 2022, 8 (12), e12545 10.1016/j.heliyon.2022.e12545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen J.; Thomas E.; Menon J.; Gray M.; Skaripa-Koukelli I.; Gill M. R.; Wallington S.; Miller R. L.; Vallis K. A.; Carlisle R. Indium-111 Labelling of Liposomal HEGF for Radionuclide Delivery via Ultrasound-Induced Cavitation. J. Controlled Release 2020, 319, 222–233. 10.1016/j.jconrel.2019.12.045. [DOI] [PubMed] [Google Scholar]