Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2023 Oct 20;13:17965. doi: 10.1038/s41598-023-44739-7

Spin-polarized Majorana zero modes in proximitized superconducting penta-silicene nanoribbons

R C Bento Ribeiro 1, J H Correa 2,3, L S Ricco 4, I A Shelykh 4,5, Mucio A Continentino 1, A C Seridonio 6, M Minissale 7, G Le Lay 7, M S Figueira 8,
PMCID: PMC10589331  PMID: 37863891

Abstract

We theoretically propose penta-silicene nanoribbons (p-SiNRs) with induced p-wave superconductivity as a platform for the emergence of spin-polarized Majorana zero-modes (MZMs). The model explicitly considers the key ingredients of well-known Majorana hybrid nanowire setups: Rashba spin-orbit coupling, magnetic field perpendicular to the nanoribbon plane, and first nearest neighbor hopping with p-wave superconducting pairing. The energy spectrum of the system, as a function of chemical potential, reveals the existence of MZMs with a well-defined spin orientation localized at the opposite ends of both the top and bottom chains of the p-SiNR, associated with well-localized and nonoverlapping wave function profiles. Well-established experimental techniques enable the fabrication of highly ordered p-SiNRs, complemented by a thin lead film on top, responsible for inducing p-wave superconductivity through proximity effect. Moreover, the emergence of MZMs with explicit opposite spin orientations for some set of model parameters opens a new avenue for exploring quantum computing operations, which accounts for both MZMs and spin properties, as well as for new MZMs probe devices based on spin-polarized electronic transport mechanisms.

Subject terms: Nanoscience and technology, Physics

Introduction

Ultra-scaling of nanoelectronic devices, beyond Moore’s law, still using the ubiquitous silicon technology, could come from silicene13, the first silicon-based graphene-like artificial two-dimensional (2D) quantum material, which further engendered the Xenes family4, and which was used to fabricate an atom-thin channel in a field effect transistor5, 6. Moreover, topological silicon nanowires hosting Majorana fermions could be a materials platform for a quantum computer7. However, like other nanowire candidates, even proximitized ones based on heavier constituents with larger spin-orbit coupling, until now, no conclusive experimental measurements guarantee incontrovertibly the existence of topologically protected Majorana zero modes (MZMs) for the possible realization of qubits8, 9.

Since the appearance of the generic Kitaev model10, several platforms were proposed to realize it, both from theoretical1117, and experimental points of view1824. A helpful review of the experimental state-of-the-art on this subject can be found in Refs.9, 25, 26. This model considers p-wave superconductor pairing between electrons in different sites of a one-dimensional chain (Kitaev chain) and predicts the existence of unpaired MZMs at opposite ends of a finite Kitaev chain. However, until now, there are no conclusive experimental measurements that guarantee without doubt the existence of topologically protected MZMs2630. The experimental detection of MZMs remains an elusive problem, and they were not really observed until now. Per se, this situation justifies the search for new platforms.

One possible alternative platform is the one-dimensional honeycomb nanoribbons (HNRs) that have been receiving growing attention in the literature3134. Nevertheless, the mono-elemental 2D graphene-like materials coined Xenes, where X represents elements from group IIIA to group VIA of the periodic table, could constitute possible candidates to build HNRs with the ability to harbor MZMs at their ends3538. Penta-Silicene (X=Si) is an up-and-coming candidate in this family for obtaining a p-SiNR geometry that can host MZMs3941.

A paradigmatic breakthrough would be the experimental implementation of the generic Kitaev toy model with a silicon platform10. In a previous work34, we addressed the problem of Majorana spin discrimination employing a double-spin Kitaev zigzag honeycomb nanoribbons (KzHNR), which mimics two parallel Kitaev chains connected by the hopping t (see figure 1 of34). Since such KzHNRs have not been realized in experiments, we look instead in the present paper at the possibility of obtaining MZMs in p-SiNRs, harboring Dirac fermions, which have been epitaxially grown on Ag(110) surfaces39, 4244. Typically, highly perfect, atom thin, massively aligned single strand p-SiNRs, 0.8 nm in width, and with lengths extending to tens of nanometers were obtained by molecular beam epitaxy upon in situ Si deposition onto Ag(110) surfaces held at room temperature, as shown in Fig. 1a. In scanning tunneling microscopy (STM) and high-resolution nc-AFM images, these p-SiNRs appear as two shifted lines of protrusions along the [110] direction as shown in Fig. 1b,c and are separated by twice the nearest neighbor Ag-Ag distance, i.e., 0.577 nm. Their hidden internal atomic structure was initially uncovered employing thorough density functional theory (DFT) calculations and simulations of the STM images39, pointing to an arrangement of pure Si pentagonal building blocks, as displayed in Fig. 1d, which defines the missing pentagonal row (P-MR) model employed in the Supplemental information of reference39 to optimize the angles and the distance between the silicon atoms in the pentagonal arrangement. This unique atomic geometry was later directly visualized by high-resolution non-contact atomic force microscopy (Fig. 1c from40). We will theoretically demonstrate that these p-SiNRs could constitute a tantalizing disruptive new Kitaev platform.

Figure 1.

Figure 1

p-SiNR on Ag(110) surface. (a,b) Experimental STM images (uncorrected drift), (c) High-resolution nc-AFM image. (d) Top and cross view of the arrangement of the Si pentagonal building blocks. (a,b) Courtesy Eric Salomon, (c) Reprinted with permission from40. Copyright 2023 American Chemical Society. (d) From Cerda et al.39.

Theoretically, the most well-established example of a topological superconductor hosting MZMs is a spinless chain with p-wave superconducting pairing between neighboring sites, as proposed by Kitaev10. This type of superconductivity seems to be extremely rare in nature45. However, spinless orbital p-wave superconductivity can be engineered from a conventional spin-singlet s-wave superconductor when associated with a material exhibiting helical bands46. This was first achieved experimentally by Mourik et al.19, using a semiconducting nanowire with strong Rashba spin-orbit interaction in proximity to an s-wave superconductor subject to a magnetic field aligned along the axis of the nanowire. Despite significant advances in sample fabrication, measurement techniques, and theoretical understanding, a definitive signature of MZMs detected through electronic transport measurements in such hybrid systems remains challenging47. The main reason stems from inevitable inherent disorder, which generates trivial zero-energy states, mimicking the MZMs signatures48.

We propose a new experimental platform to circumvent this disorder issue, still within the same conceptual approach. Compared to previous proposals of Majorana nanowire devices, the paradigmatic difference is the replacement of the semiconducting nanowire by a new, highly ordered material, with transport measurements replaced by scanning tunneling spectroscopy (STS). Specifically, our proposal relies on the implementation of long and atomically precise p-SiNRs, grown in situ under ultra-high-vacuum (UHV) in the cleanest conditions on the Ag(110) surface, all aligned along the [110] direction3941.

The localized zero energy states associated with MZMs at the ends of p-SINRs can be detected by low-temperature STS via an STM immersed in a strong parallel magnetic field, following the methodology of Yazdani and co-workers49. Since silver is not a superconductor, we will proximitize the p-SiNRs in situ with lead islands. As mentioned before, lead is a conventional BCS superconductor with a relatively high critical temperature that can be easily grown at Ag(110) surfaces50, which is known to interact only very weakly with the Si nanoribbons while preserving its structural and electronic properties51, 52. To this end, a thin lead film will be evaporated in situ on top of the p-SiNRs and annealed at temperature 200C, as already mentioned in4. Hence, at variance with the classical fabrication and measurement procedures, all the steps in the experiments and measurements will be performed in perfectly controlled and highly cleaned conditions in a UHV system, which will comprise a surface science chamber (with all analytical tools and the two Si and Pb evaporators) directly linked to the STM/STS chamber.

Moreover, within the present proposal, we characterize the topological phase transitions (TPTs) employing the spinless version of the model and the inclusion of the p-wave superconducting pairing and the magnetic field reveal the emergence of topologically protected MZMs with the spin discriminated at opposite ends of the p-SiNRs; this result constitutes the main finding of the work. We also calculate the wave function of the MZMs at the ends of the p-SiNR, showing its topological signature.

The model

Lattice transformations

In Fig. 2a, to reduce the geometry complexity of the p-SiNR and facilitate the tight-binding calculations, we redefine its structure using square-shaped pentagons. In the geometry of the pentagons that constitute the p-SiNRs of Fig. 2b, four silicon atoms are located on the missing silver row, and only one exhibits a buckling structure (pink atoms). We neglect the buckling structure of these atoms and employ a planar configuration composed of square-shaped pentagons. As the distance between the silicon atoms that constitute the pentagons are close, we consider them equal to a0 and identify it as the lattice parameter of the p-SiNR. We also define the nearest neighbor hopping as equal to t, which is considered the energy unit in all the calculations. L2Na0, is the length of the p-SiNR, and N is the number of sites of the corresponding Kitaev chain (top or bottom), employed in the calculation, as indicated in Fig. 2c, that exhibits the shape of the p-SiNR and the unit cell composed of six atoms inside the dashed rectangle employed in the calculations. We expect these simplifications will not change the results once we keep the lattice.

Figure 2.

Figure 2

(a) Penta-silicene (p-SiNRs) lattice transformation adopted. (b) Penta-silicene angles. (c) Sketch of nonequivalent Si atoms placed at the vertices of the “square” pentagonal lattice. The dashed rectangle depicts the unit cell of the system.

Effective Hamiltonian—spinless case

The total Hamiltonian, which describes the spinless p-SiNR of Fig. 3 is given by

H=Ht+HΔ, 1

with

Ht=-i=1Nμai,+ai,+-ai,-ai,-+bi,+bi,+-bi,-bi,-+ci,+ci,+-ci,-ci,-+di,+di,+-di,-di,-+ei,+ei,+-ei,-ei,-+fi,+fi,+-fi,-fi,--i=1Ntai,+bi,+-bi,-ai,-+bi,+ci,+-ci,-bi,-+ci,+di,+-di,-ci,-+di,+ei,+-ei,-di,-+ei,+fi,+-fi,-ei,--i=1N-1tai+1,+fi,+-fi,-ai+1,-+ai+1,+ci,+-ci,-ai+1,-+di+1,+fi,+-fi,-di+1,-+H.c., 2

where μ is the chemical potential, the index (−) and (+) differentiate the creation and annihilation operators for electrons and holes, respectively, and H.c. is the Hermitian conjugate. The system Hamiltonian of Eq. (2) was built according to the unit cell of nonequivalent Si atoms (a, b, c, d, e, f) shown in Fig. 2c.

Figure 3.

Figure 3

Sketch of the p-SiNRs: The penta-silicene system comprises two Kitaev chains, one on the top and the second on the bottom, hybridized via hopping t. The ellipses represent the superconducting p-wave pairing between silicon atoms belonging to the same chain, represented by pink (top) and yellow (bottom,) respectively (in the real material, these atoms correspond to the buckled one). The arrows only indicate the spin polarization needed to define a Kitaev chain.

The p-SiNRs are grown on Ag(110) surfaces in the setup proposed here. However, silver is not a superconductor, and to generate a p-wave pairing Δ on the pink and yellow atoms of Fig. 3, we evaporate in situ a thin lead film over the Ag(110) surface in such a way that the buckled silicon atoms enter in contact with the lead atoms. Under the presence of a strong Rashba spin orbit coupling (RSOC) arising from the Pb atoms and an applied magnetic field, the s-wave Cooper pairs of the Pb film can enter into the p-SiNR region via proximity effect (Andreev reflections)12, giving rise to a p-wave-induced pairing in the double p-SiNRs structure. By following the same procedure done in our previous work34 and based on the Kitaev model10, we introduce a spinless p-wave superconducting pairing Δ between the “external” pink and yellow atoms of the same type as shown in Fig. 3. The Hamiltonian, which describes such a pairing, reads

HΔ=i=1N-1Δbi,+bi+1,--bi+1,-bi,++ei,+ei+1,--ei+1,-ei,++H.c.. 3

Effective Hamiltonian—spinful case

In order to properly account for the spin degree of freedom in the superconducting p-SiNRs, we follow our previous work34. Considering also the spin degree of freedom on both Ht and HΔ,

Ht=-i=1,σNμ(ai,+,σai,+,σ-ai,-,σai,-,σ+bi,+,σbi,+,σ-bi,-,σbi,-,σ+ci,+,σci,+,σ-ci,-,σci,-,σ+di,+,σdi,+,σ-di,-,σdi,-,σ+ei,+,σei,+,σ-ei,-,σei,-,σ+fi,+,σfi,+,σ-fi,-,σfi,-,σ)-i=1,σNt(ai,+,σbi,+,σ-bi,-,σai,-,σ+bi,+,σci,+,σ-ci,-,σbi,-,σ+ci,+,σdi,+,σ-di,-,σci,-,σ+di,+,σei,+,σ-ei,-,σdi,-,σ+ei,+,σfi,+,σ-fi,-,σei,-,σ)-i=1,σN-1t(ai+1,+,σfi,+,σ-fi,-,σai+1,-,σ+ai+1,+,σci,+,σ-ci,-,σai+1,-,σ+di+1,+,σfi,+,σ-fi,-,σdi+1,-,σ)+H.c. 4
HΔ=i=1,σN-1Δbi,+,σbi+1,-,σ-bi+1,-,σbi,+,σ+ei,+,σei+1,-,σ-ei+1,-,σei,+,σ+H.c.. 5

We introduce a Zeeman effect due to the application of an external magnetic field perpendicular to the p-SiNRs plane. The Hamiltonian, which accounts for the Zeeman effect, reads:

Hz=i=1,σNZsgn(σ)ai,σai,σ+bi,σbi,σ+ci,σci,σ+di,σdi,σ+ei,σei,σ+fi,σfi,σ+H.c., 6

wherein Z is the effective strength of the external Zeeman magnetic field B, and σ=, is the spin index for each operator.

The extrinsic RSOC induced in the p-SiNRs can be modulated by the action of an external electric field E applied perpendicularly to the nanoribbon plane5356. Its corresponding general Hamiltonian reads

HR=i,j=1,σNici,σ(ui,j.γ)cj,(σ¯)+H.c., 7

where ui,j=-Ra0k^×δi,j, with R being the extrinsic RSOC parameter, δi,j is the vector that connects the adjacent lattice sites i and j, and γ the Pauli matrices. The index σ¯ indicates the opposite spin direction of σ. The Eq. (7) turns into

HR=i=1,σNγ1(ai,σbi+1/2,σ¯)+γ2(bi+1/2,σai,σ¯)+(ai,σci-1,σ¯)-(ci-1,σai,σ¯)+(-i)(ai,σfi,σ¯)+(i)(fi,σai,σ¯)+γ3(bi+1/2,σci+1,σ¯)+γ4(ci+1,σbi+1/2,σ¯)+(-i)(ci+1,σdi+1,σ¯)+(i)(di+1,σci+1,σ¯)-(di+1,σfi,σ¯)+(fi,σdi+1,σ¯)+γ3(di+1,σei+3/2,σ¯)+γ4(ei+3/2,σdi+1,σ¯)+γ1(ei+3/2,σfi+2,σ¯)+γ2(fi+2,σei+3/2,σ¯)+H.c., 8

where γ1=-12+i32 , γ2=12-i32 , γ3=-12-i32 and γ4=12+i32.

Notice that from Eqs. (6) and (7), we are assuming the external Zeeman magnetic field B perfectly perpendicular to the RSOC, i.e, BB0 and B=0. In Rashba nanowires setups, this condition is responsible for the vanishing of the induced superconducting gap at zero momentum (inner gap) and the opening of a constant gap at finite momentum (outer gap), which characterizes the topological phase transition and the concomitant emergence of MZMs protected by the outer gap12.

However, from the experimental perspective, ensuring that the magnetic field is applied only in the perpendicular direction of the RSOC field can be challenging. Then, it is natural to consider also the effects of B0. In this situation, we have both components of the Zeeman field, and the critical magnetic field condition for the topological phase transition remains the same. However, the behavior of the outer gap is not constant anymore, which affects the topological protection of the MZMs towards fault-tolerant quantum computing operations. The effect of B in the outer gap is not so detrimental if the RSOC is strong.

It is worth noticing that the opposite cases of BB0 and B=0 can lead to the vanishing of the outer gap, hence preventing the topological phase and emergence of MZMs. Therefore, since our system is qualitatively described by the similar underlying physics of Rashba nanowires, it is appropriate to experimentally ensure the dominance of the magnetic field component perpendicular to the Rashba field.

We now can define the total system Hamiltonian as

Htotal=Ht+HZ+HR+HΔ, 9

which can be written in the corresponding Bogolyubov–de Gennes (BdG) form in k-space as Htotal(k)=ΦTHBdG(k)Φ, with

HBdG(k)=H,(k)H,(k)HΔ,,(k)HΔ,,(k)H,(k)H,(k)HΔ,(k)HΔ,,(k)HΔ,,(-k)HΔ,,(-k)H,(-k)H,(-k)HΔ,,(-k)HΔ,,(-k)H,(-k)H,(-k), 10

where Hσ,σ(±k) and HΔ,σ,σ(±k) represent the matrix elements for different spin directions and the matrix elements corresponding to the part of the matrix where superconducting couplings Δ appear, respectively. The spinor Φ was constructed with the fermionic operators in the following order:

ΦT=(ak,,bk,,ck,,dk,,ek,,fk,,ak,,bk,,ck,,dk,,ek,,fk,,a-k,,b-k,,c-k,,d-k,,e-k,,f-k,,a-k,,b-k,,c-k,,d-k,,e-k,,f-k,). 11

The spin alignment for each situation in the next section is computed numerically. We calculate the mean value of the Pauli matrix in z^ direction S^z, i.e., S^z=Ψ|S^z|Ψ, where |Ψ are the eigenvectors of the total Hamiltonian given by Eq. (9).

In hybrid semiconducting-superconducting nanowires, sometimes called Majorana nanowires, the following features strongly suggest the emergence of MZMs at the nanowire ends12:

  1. Closing and subsequent reopening of the superconducting gap in the bulk relation dispersion as the chemical potential μ changes, indicating a TPT;

  2. Emergence of persistent zero-modes for specific system parameter values associated with nonoverlapping wave functions localized at the opposite ends of the nanowire.

To obtain the TPTs present in the p-SiNRs, we will consider the infinite case given by the Hamiltonian of Eq. (1). We calculate the bulk band structure, discussed in detail in the supplemental material (SM). To investigate the existence of MZMs in the p-SiNRs, we will analyze the spinless p-SiNRs with finite size N=100 and calculate the energy spectrum as a function of the chemical potential μ and the probability density function |ψ|2 associated with the zero-energy states which arise on the real axis of the energy spectrum.

Both the energies En and eigenvectors ψn per site are obtained by numerically solving the Schrödinger equation Hψn=Enψn for the Hamiltonian of Eq. (1). To evaluate the position dependence of the wave functions associated with zero energy states, we numerically calculate the eigenvector ψn when En=0, which allows obtaining the probability density per lattice site according to

|ψn|2=ψnψn. 12

Results and discussion

Finite spinless p-SiNRs

We employed the following parameter set in all the calculations: Δ=0.5t, Z=0.1t, R=0.05t and N=100. The top panels of Fig. 4 show the bulk energy dispersion of the p-SiNRs, in the presence of the superconducting p-wave pairing, described by Eqs. (13), along the kx direction, for three representative values of chemical potential μ [vertical lines in panel (d)]. Figure 4a depicts the closing of the superconductor (SC) gap at kx=0 for μ=0.0t. As the value of μ enhances, the SC gap opens as shown in panels (b) for μ=0.4t and closes again at kx=0 for μ=0.7t as shown in panel (c). This closing and reopening of the SC gap with the tuning of μ characterize a topological phase transition. The bulk-boundary correspondence principle57 ensures the topologically protected MZMs at the ends of the p-SiNRs.

Figure 4.

Figure 4

Spinless case: (ac) Bulk energy dispersion for the spinless p-SiNRs as a kx function. The colors red, green, and magenta used in the panels correspond to μ=0.0t, 0.4t, and 0.7t, respectively. (d) Energy spectrum as a function of the chemical potential. (eg) Zero-energy states spectrum. (ik) Probability density per lattice site |ψ|2, associated with zero-energy states on the real axis of the Kitaev, top or bottom chains.

To verify the emergence of MZMs associated with the TPTs depicted in Fig. 4a–c, we plot the p-SiNRs energy spectrum as a function of μ in Fig. 4d. There are no zero-energy modes for the values of μ where the gap closes (red and magenta vertical lines). However, for values of μ inside the topological gap, for example, when μ=0.4t (green vertical line), two zero-energy states appear on the real axis, indicating the presence of MZMs at the opposite ends of the p-SiNRs, topologically protected by the effective p-wave SC gap (Fig. 4b). This finding is similar to what was obtained in our previous work34, wherein the MZMs emerge at the opposite ends of a finite double zHNR.

Figure 4f shows isolated zero-energy modes for μ=0.4t, which are associated with a nonoverlapping wave function, well-localized at the ends of the p-SiNRs, as depicted in Fig. 4j; which together with the topological phase transition (Fig. 4a–c), is a piece of strong evidence that topologically protected MZMs emerge at the opposite ends of the spinless p-SiNRs. In the Supplemental Material, we developed an extensive analysis of the topological and trivial phases of the spinless p-wave superconducting p-SiNR, that can be distinguished by the Zak number topological invariant58. However, we cannot afford to do the same study for the spinful case due to the extreme mathematical complexity.

Although there are zero-energy modes for other values of μ (Fig. 4e,g), they are not associated with wave functions well-localized at the ends of the p-SiNR, as can be seen in Fig. 4i,k, for μ=0.0t and μ=0.7t, respectively. This implies that a zero mode cannot be exclusively attributed to MZMs. In this context, the genuine nature of the zero-modes shown in Fig. 4e,f, for instance, can be experimentally distinguished by combining STM and atomic force microscopic (AFM) measurements49, 59. This approach allows associating the zero-bias conductance peaks at the p-SINR ends (Fig. 4f) with their well-localized wave functions through spatially resolved conductance maps, cf. Fig. 4j.

Furthermore, we highlight that we analyze only one region of all energy spectrum shown in Fig. 4d, which presents other ranges of chemical potentials wherein a zero-energy state, associated with the emergence of MZMs, arises. A more detailed study of the energy spectra can be found in the SM. We can also observe that, unlike the system of our previous work34, the energy spectrum of Fig. 4d is asymmetric at about μ=0.

Finite spinful p-SiNRs

Now we will analyze how the spinless scenario shown in Fig. 4 is affected by the presence of both Zeeman field (Eq. 6) and extrinsic RSOC (Eq. 7) coupling within the spinful description (Eq. 9).

Figure 5a–e exhibit the energy dispersion of the p-SiNRs given by the eigenenergies of BdG Hamiltonian (Eq. 10) as a function of kx, for distinct values of the chemical potential μ, indicated by vertical lines in Fig. 5f. The spin polarization is indicated by the vertical color bar, in which the red color represents the spin =1, while the blue color stands for spin =-1, and the light shades of colors mean the spin is neither up nor down. As μ is tuned, we can see the opening and closing of the superconducting gap, thus indicating a TPT, as previously verified in the spinless situation (Fig. 4a–c). However, here we can notice that each TPT associated with a specific value of μ has a preferential spin orientation, except Fig. 5c, where the system exhibits a conventional band gap.

Figure 5.

Figure 5

Spinful case—magnetic field up: (ae) Bulk energy dispersion of the superconducting p-SiNRs for the spinful situation, as a function of kx, for μ=-2.7t, -2.35t, 1.1t, 2.09t and 2.2t, respectively. (f) Energy spectrum as a function of the chemical potential. Vertical lines indicate the chosen values of chemical potential shown on top panels. (g)–(k) Zero-energy states spectrum. (l)–(q) Probability density per lattice site |ψ|2, associated with zero-energy states on the real axis of the spin-polarized Kitaev, top or bottom chains.

The spin-polarized TPTs in Fig. 5a,b,d,e lead to the appearance of spin-polarized zero-modes in Fig. 5f, which shows the system energy spectrum as a function of μ. These zero-modes indicate the emergence of spin-polarized MZMs at the ends of the p-SiNRs as μ is changed, similar to those found in34.

The panels g–k of Fig. 5 depict the corresponding energy levels sorted in ascending order. The different values of μ used to calculate the MZMs are indicated by vertical black lines in Fig. 5f. For μ=-2.7t (Fig. 5g), there are two zero modes on the real axis of spin up (red points), associated with nonoverlapping wave functions shown in Fig. 5l.

For μ=-2.35t (Figs. 5h and 6h), there are two energy-states in the spin-up direction and the other two with spin-down, associated with degenerate (blue and red) nonoverlapping wave functions shown in Figs. 5m and 6m, respectively. It is worth mentioning that this situation is absent from our previous paper34 and constitutes a pivotal difference exclusively related to the p-SiNRs. Here, pairs of MZMs at opposite edges split into top and bottom chains of the nanoribbon with opposite spins. These MZMs, acting as an effective two-level electronic system, would allow the recovery of the spin degree of freedom as a good quantum number for purposes of quantum computing, as well as to define the intrinsic spins of the regular fermions built up by these top and bottom pairs of MZMs edge states, respectively. By considering two p-SiNRs as source and drain reservoirs with an immersed quantum dot, a type of single electron transistor (SET) could be set15, 60, 61, allowing to detect a spin-polarized zero-bias conductance provided by one of the spins associated with a given pair of MZMs placed at one particular nanoribbon chain.

Figure 6.

Figure 6

Spinful case—magnetic field down: The same situation of Fig. 5 but with the magnetic field pointing in the opposite direction.

The chemical potential μ=1.1t (Fig. 5i) represents a non-topological region, there are four spin-down energy states outside the real axis, there are no MZMs, and the wave functions completely overlap along the ribbon. The system exhibits a particular “semiconductor” phase with the gap controlled by the μ variation and two delta peaks generated by the zero modes outside the real axis, inside the gap.

For μ=2.09t (Fig. 5j), there are two zero modes on the real axis of spin up (red points). Finally, for μ=2.2t (Fig. 5k), there are four MZMs with spin-down energy states on the real axis. This situation happens because, at μ=2.09t, a TPT occurs for spin-up, the gap closes at k=±π, and for μ>2.09t the gap defines a trivial band insulator for this spin orientation and MZMs with spin-up are not available anymore. These well-localized probability densities describing wave functions centered at the opposite ends of the superconducting p-SiNRs, associated with zero-energy edge states, indicate the emergence of MZMs in the same way previously found for the spinless system.

Figure 6 represents the same situation as Fig. 5 but with the magnetic field pointing in the opposite direction. The net effect on the p-SiNRs is to change the MZMs, for all μ values, in spin up to down and vice versa. Therefore, it is possible to select the spin polarization of the MZMs by changing the chemical potential μ or the magnetic field orientation.

In Fig. 7, we mainly analyze the dispersion relation, energy spectrum, and nature of the zero-modes at μ=0 of Fig. 5, with the magnetic field pointing in the up direction. Figure 7a depicts E(k) as a function of kx, showing that there is a finite topological superconducting gap only for the spin-down orientation (blue line), while the spin-up (red line) remains gapless. This behavior suggests a spin-polarized TPT at zero chemical potential, implying that only the system’s spin-down component is within the topological regime. At the same time, the spin-up belongs to a metallic phase. Fig. 7b,c represent two MZMs of spin-down with its correspondent nonoverlapped wave function, respectively, and Fig. 7d, shows detail at around μ=0 region.

Figure 7.

Figure 7

Analysis in detail of the μ=0 case of Fig. 5 with the magnetic field pointing in the up direction.

Additionally, we investigate how the energy spectrum as a function of μ is affected by the length of the p-SiNRs. Fig. 8 exhibits the superconducting p-SiNRs’ energy spectrum for increasing nanoribbon length values N. From the smallest system considered (N=10, Fig. 8a) to the largest one (N=100, Fig. 8e), it can be noticed a decrease of the amplitude of oscillations at around the real axis (E=0), and at the same time the definition of the MZMs on the real axis improves as N increases, and for N=100 the MZMs are well defined in all the real axis. It should be mentioned that these oscillations around zero energy are expected for short Majorana nanowires due to the overlap between Majorana wavefunctions of opposite ends. Therefore, such oscillations are expected to decrease as the system becomes larger. The same behavior was verified in the work34.

Figure 8.

Figure 8

Energy spectrum as a function of the chemical potential μ, for distinct lengths of superconducting p-SiNRs, namely, for N=10 (a), N=20 (b), N=40 (c), N=60 (d) and N=100 (e).

Conclusions and perspectives

This paper demonstrates the emergence of topologically protected MZMs at opposite ends of spinless and spinful p-SiNRs with p-wave superconducting pairing. These MZMs exhibit spin discrimination, and their polarization can be controlled by adjusting the nanoribbon chemical potential or the external magnetic field. To implement our findings experimentally, we propose a material engineering of p-SiNRs grown over an Ag(110) surface (cf. Fig. 1a), with a thin Pb film deposited on top4, 50. In this device, the proximity effect will enable the penetration of Cooper pairs from the Pb s-wave superconductor into the p-SiNRs12, and in combination with an external magnetic field and the extrinsic RSOC modulated by the action of an external electric field E applied perpendicularly to the nanoribbon plane5356, it will induce p-wave pairing in the buckled atoms of the double p-SiNRs structure (cf. Fig. 1d).

We should highlight the potential applications driven by the spin-polarized MZMs presented in this work, notably demonstrated in the results of Fig. 7, with the down spin component associated with MZMs, while the up component displays metallic features, resulting in a half-metallic behavior for the system62, 63. This property could be harnessed to design a single Majorana transistor (SMT) built from a quantum dot (QD) sandwiched by finite p-SiNR leads6, 64, 65. This setup resembles the conventional single electron transistor (SET)66. The SMT can be a valuable tool for discerning between MZMs and trivial Andreev bound states15, 17. Particularly, the leakage of MZMs through the QD67, along with both local and crossed Andreev reflections induced by a specific spin orientation within the p-SiNR-QD-p-SiNR SMT structure, is expected to generate distinct electronic transport signatures, enabling the identification of MZMs.

In addition to the spin-polarization of MZMs, our proposal also features the emergence of two MZMs located at opposite ends of the p-SiNR top chain, while another two with opposed spins are at the bottom, as illustrated in Figs. 5h and 6h. These MZMs acting as an effective two-level electronic system would allow the recovery of the spin degree of freedom as a good quantum number for purposes of quantum computing implementation, as well as to define the intrinsic spins of the regular fermions built-up by these top and bottom couples of edge MZMs, respectively. It is crucial for implementing quantum computing operations between two qubits, as it requires the presence of two fermionic sites, i.e., four MZMs68, 69. Therefore, our proposal is a promising candidate for realizing hybrid quantum computing operations70, 71 between conventional qubits and spin-polarized Majorana-based qubits and paves the way for defining quantum computing operations using Majorana spintronics72.

Supplementary Information

Acknowledgements

M.S.F., M.A.C., and A.C.S. acknowledge financial support from the National Council for Scientific and Technological Development (CNPq) grant numbers 311980/2021-0, 305810/2020-0, 308695/2021-6, respectively. M.S.F. acknowledges the Foundation for Support of Research in the State of Rio de Janeiro (FAPERJ) processes number 210 355/2018 and 211.605/2021. M.A.C. acknowledges financial support to the Foundation for Support of Research in the State of Rio de Janeiro (FAPERJ) for the fellowship of the Programa Cientistas do Nosso Estado, E-26/201.223/2021. L.S.R. and I.A.S. acknowledge the Icelandic Research Fund (Rannis), grant No. 163082-051.

Author contributions

All authors participate in the scientific discussion of the work. All authors reviewed the paper. M.S.F., R.C.B.R., M.M., G.L.L., L.S.R., A.C.S., and J.H.C. edit the paper. R.C.B.R. performed the numerical calculations. R.C.B.R., and L.S.R. performed analytical calculations.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The online version contains supplementary material available at 10.1038/s41598-023-44739-7.

References

  • 1.Vogt P, Padova PD, Quaresima C, Jose Avila EF, Asensio MC, Resta A, Ealet B, Le Lay G. Silicene: Compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 2012;108:155501. doi: 10.1103/PhysRevLett.108.155501. [DOI] [PubMed] [Google Scholar]
  • 2.Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012;108:245501. doi: 10.1103/PhysRevLett.108.245501. [DOI] [PubMed] [Google Scholar]
  • 3.Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K. Evidence of silicene in honeycomb structures of silicon on Ag(111) Nano Lett. 2012;12:3507. doi: 10.1021/nl301047g. [DOI] [PubMed] [Google Scholar]
  • 4.Dávila M, Le Lay G. Silicene: Genesis, remarkable discoveries, and legacy. Mater. Today Adv. 2022;16:100312. doi: 10.1016/j.mtadv.2022.100312. [DOI] [Google Scholar]
  • 5.Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015;10:227–231. doi: 10.1038/nnano.2014.325. [DOI] [PubMed] [Google Scholar]
  • 6.Le Lay G. Silicene transistors. Nat. Nanotechnol. 2015;10:202. doi: 10.1038/nnano.2015.10. [DOI] [PubMed] [Google Scholar]
  • 7.Frolov SM, Plissard SR, Nadj-Perge S, Kouwenhoven LP, Bakkers EP. Quantum computing based on semiconductor nanowires. MRS Bull. 2013;38:809. doi: 10.1557/mrs.2013.205. [DOI] [Google Scholar]
  • 8.Rančić MJ. Exactly solving the Kitaev chain and generating Majorana-zero-modes out of noisy qubits. Sci. Rep. 2022;12:19882. doi: 10.1038/s41598-022-24341-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Flensberg K, von Oppen F, Stern A. Engineered platforms for topological superconductivity and Majorana zero modes. Nat. Rev. Mater. 2021 doi: 10.1038/s41578-021-00336-6. [DOI] [Google Scholar]
  • 10.Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131. http://stacks.iop.org/1063-7869/44/i=10S/a=S29 (2001)
  • 11.Oreg Y, Refael G, von Oppen F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 2010;105:177002. doi: 10.1103/PhysRevLett.105.177002. [DOI] [PubMed] [Google Scholar]
  • 12.Aguado R. Majorana quasiparticles in condensed matter. Riv Nuovo Cimento. 2017;40:523. doi: 10.1393/ncr/i2017-10141-9. [DOI] [Google Scholar]
  • 13.Schuray A, Weithofer L, Recher P. Fano resonances in Majorana bound states-quantum dot hybrid systems. Phys. Rev. B. 2017;96:085417. doi: 10.1103/PhysRevB.96.085417. [DOI] [Google Scholar]
  • 14.Prada E, Aguado R, San-Jose P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B. 2017;96:085418. doi: 10.1103/PhysRevB.96.085418. [DOI] [Google Scholar]
  • 15.Ricco LS, de Souza M, Figueira MS, Shelykh IA, Seridonio AC. Spin-dependent zero-bias peak in a hybrid nanowire-quantum dot system: Distinguishing isolated Majorana fermions from Andreev bound states. Phys. Rev. B. 2019;99:155159. doi: 10.1103/PhysRevB.99.155159. [DOI] [Google Scholar]
  • 16.Zhang H, Liu DE, Wimmer M, Kouwenhoven LP. Next steps of quantum transport in Majorana nanowire devices. Nat. Commun. 2019;10:5128. doi: 10.1038/s41467-019-13133-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Prada E, San-Jose P, de Moor MWA, Geresdi A, Lee EJH, Klinovaja J, Loss D, Nygård J, Aguado R, Kouwenhoven LP. From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires. Nat. Rev. Phys. 2020;2:575. doi: 10.1038/s42254-020-0228-y. [DOI] [Google Scholar]
  • 18.Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 2012;8:887 EP. doi: 10.1038/nphys2479. [DOI] [Google Scholar]
  • 19.Mourik V, Zuo K, Frolov SM, Plissard SR, Bakkers EPAM, Kouwenhoven LP. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science. 2012;336:1003. doi: 10.1126/science.1222360. [DOI] [PubMed] [Google Scholar]
  • 20.Nadj-Perge S, Drozdov IK, Li J, Chen H, Jeon S, Seo J, MacDonald AH, Bernevig BA, Yazdani A. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science. 2014;346:602. doi: 10.1126/science.1259327. [DOI] [PubMed] [Google Scholar]
  • 21.Krogstrup P, Ziino NLB, Chang W, Albrecht SM, Madsen MH, Johnson E, Nygård J, Marcus CM, Jespersen TS. Epitaxy of semiconductor-superconductor nanowires. Nat. Mater. 2015;14:400. doi: 10.1038/nmat4176. [DOI] [PubMed] [Google Scholar]
  • 22.Jeon S, Xie Y, Li J, Wang Z, Bernevig BA, Yazdani A. Distinguishing a Majorana zero mode using spin-resolved measurements. Science. 2017;358:772. doi: 10.1126/science.aan3670. [DOI] [PubMed] [Google Scholar]
  • 23.Clarke DJ. Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B. 2017;96:201109(R). doi: 10.1103/PhysRevB.96.201109. [DOI] [Google Scholar]
  • 24.Gül Ö, Zhang H, Bommer JDS, de Moor MWA, Car D, Plissard SR, Bakkers EPAM, Geresdi A, Watanabe K, Taniguchi T, Kouwenhoven LP. Ballistic Majorana nanowire devices. Nat. Nanotechnol. 2018;13:192. doi: 10.1038/s41565-017-0032-8. [DOI] [PubMed] [Google Scholar]
  • 25.Lutchyn RM, Bakkers EPAM, Kouwenhoven LP, Krogstrup P, Marcus CM, Oreg Y. Majorana zero modes in superconductor-semiconductor heterostructures. Nat. Rev. Mater. 2018;3:52. doi: 10.1038/s41578-018-0003-1. [DOI] [Google Scholar]
  • 26.Jäck B, Xie Y, Yazdani A. Detecting and distinguishing Majorana zero modes with the scanning tunnelling microscope. Nat. Rev. Phys. 2021;3:541. doi: 10.1038/s42254-021-00328-z. [DOI] [Google Scholar]
  • 27.Pan H, Das Sarma S. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2020;2:013377. doi: 10.1103/PhysRevResearch.2.013377. [DOI] [Google Scholar]
  • 28.Pan H, Cole WS, Sau JD, DasSarma S. Generic quantized zero-bias conductance peaks in superconductor-semiconductor hybrid structures. Phys. Rev. B. 2020;101:024506. doi: 10.1103/PhysRevB.101.024506. [DOI] [Google Scholar]
  • 29.Pan H, Liu C-X, Wimmer M, DasSarma S. Quantized and unquantized zero-bias tunneling conductance peaks in Majorana nanowires: Conductance below and above 2e2/h. Phys. Rev. B. 2021;103:214502. doi: 10.1103/PhysRevB.103.214502. [DOI] [Google Scholar]
  • 30.Kim H, Palacio-Morales A, Posske T, Rózsa L, Palotás K, Szunyogh L, Thorwart M, Wiesendanger R. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 2018;4:eaar5251. doi: 10.1126/sciadv.aar5251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Klinovaja J, Ferreira GJ, Loss D. Helical states in curved bilayer graphene. Phys. Rev. B. 2012;86:235416. doi: 10.1103/PhysRevB.86.235416. [DOI] [Google Scholar]
  • 32.Klinovaja J, Loss D. Giant spin-orbit interaction due to rotating magnetic fields in graphene nanoribbons. Phys. Rev. X. 2013;3:011008. doi: 10.1103/PhysRevX.3.011008. [DOI] [Google Scholar]
  • 33.Maiellaro A, Romeo F, Citro R. Topological phase diagram of a Kitaev ladder. Eur. Phys. J. Spec. Top. 2018;227:1397. doi: 10.1140/epjst/e2018-800090-y. [DOI] [Google Scholar]
  • 34.Ribeiro RCB, Correa JH, Ricco LS, Seridonio AC, Figueira MS. Spin-polarized Majorana zero modes in double zigzag honeycomb nanoribbons. Phys. Rev. B. 2022;105:205115. doi: 10.1103/PhysRevB.105.205115. [DOI] [Google Scholar]
  • 35.Dutreix C, Guigou M, Chevallier D, Bena C. Majorana fermions in honeycomb lattices. Eur. Phys. J. B. 2014;87:296. doi: 10.1140/epjb/e2014-50243-9. [DOI] [Google Scholar]
  • 36.Ma T, Yang F, Huang Z, Lin H-Q. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons. Sci. Rep. 2017;7:42262 EP. doi: 10.1038/srep42262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Zhaoa A, Wang B. Two-dimensional graphene-like xenes as potential topological materials. APL Mater. 2020;8:030701. doi: 10.1063/1.5135984. [DOI] [Google Scholar]
  • 38.Grazianetti C, Martella C. The rise of the xenes: From the synthesis to the integration processes for electronics and photonics. Materials (Basel) 2021;14:4170. doi: 10.3390/ma14154170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Cerdá JI, Sławińska J, Le Lay G, Marele AC, Gómez-Rodríguez JM, Dávila M. Unveiling the pentagonal nature of perfectly aligned single-and double-strand Si nano-ribbons on Ag(110) Nat. Commun. 2016;7:13076. doi: 10.1038/ncomms13076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sheng S, Ma R, Wu Jb, Li W, Kong L, Cong X, Cao D, Hu W, Gou J, Luo J-W, Cheng P, Tan P-H, Jiang Y, Chen L, Wu K. The pentagonal nature of self-assembled silicon chains and magic clusters on Ag(110) Nano Lett. 2018;18:2937. doi: 10.1021/acs.nanolett.8b00289. [DOI] [PubMed] [Google Scholar]
  • 41.Yue S, Zhou H, Feng Y, Wang Y, Sun Z, Geng D, Arita M, Kumar S, Shimada K, Cheng P, Chen L, Yao Y, Meng S, Wu K, Feng B. Observation of one-dimensional Dirac fermions in silicon nanoribbons. Nano Lett. 2022;22:695. doi: 10.1021/acs.nanolett.1c03862. [DOI] [PubMed] [Google Scholar]
  • 42.De Padova, P., Quaresima, C., Ottaviani, C., Sheverdyaeva, P.M., Moras, P., Carbone, C., Topwal, D., Olivieri, B., Kara, A., Oughaddou, H., Aufray, B. & LeLay, G. Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett.96. 10.1063/1.3459143 (2010).
  • 43.Padova PD, Perfetti P, Olivieri B, Quaresima C, Ottaviani C, Lay GL. 1d graphene-like silicon systems: Silicene nano-ribbons. J. Phys. Condens. Matter. 2012;24:223001. doi: 10.1088/0953-8984/24/22/223001. [DOI] [PubMed] [Google Scholar]
  • 44.Pawlak R, Drechsel C, D’Astolfo P, Kisiel M, Meyer E, Cerda JI. Quantitative determination of atomic buckling of silicene by atomic force microscopy. Proc. Natl. Acad. Sci. 2020;117:228. doi: 10.1073/pnas.1913489117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Das Sarma S. In search of Majorana. Nat. Phys. 2023;19:165. doi: 10.1038/s41567-022-01900-9. [DOI] [Google Scholar]
  • 46.Laubscher K, Klinovaja J. Majorana bound states in semiconducting nanostructures. J. Appl. Phys. 2021;130:081101. doi: 10.1063/5.0055997. [DOI] [Google Scholar]
  • 47.Frolov S. Quantum computing’s reproducibility crisis: Majorana fermions. Nature. 2021;592:350. doi: 10.1038/d41586-021-00954-8. [DOI] [PubMed] [Google Scholar]
  • 48.Souto, R. S., Tsintzis, A., Leijnse, M. & Danon, J. Probing Majorana localization in minimal kitaev chains through a quantum dot (2023). arXiv:2308.14751 [cond-mat.mes-hall]
  • 49.Jäck B, Xie Y, Yazdani A. Detecting and distinguishing Majorana zero modes with the scanning tunnelling microscope. Nat. Rev. Phys. 2021;3:541. doi: 10.1038/s42254-021-00328-z. [DOI] [Google Scholar]
  • 50.Tsud N, Fabik S, Dudr V, Vondracek M, Chab V, Matolin V, Prince K. Interfacial reconstruction in the system Pb/Ag(110) Surf. Sci. 2003;542:112. doi: 10.1016/S0039-6028(03)00977-4. [DOI] [Google Scholar]
  • 51.Podsiadły-Paszkowska A, Krawiec M. Dirac fermions in silicene on Pb(111) surface. Phys. Chem. Chem. Phys. 2015;17:2246. doi: 10.1039/C4CP05104A. [DOI] [PubMed] [Google Scholar]
  • 52.Stepniak-Dybala A, Krawiec M. Formation of silicene on ultrathin Pb(111) films. J. Phys. Chem. C. 2019;123:17019. doi: 10.1021/acs.jpcc.9b04343. [DOI] [Google Scholar]
  • 53.Min H, Hill JE, Sinitsyn NA, Sahu BR, Kleinman L, MacDonald AH. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev. B. 2006;74:165310. doi: 10.1103/PhysRevB.74.165310. [DOI] [Google Scholar]
  • 54.Zarea M, Sandler N. Rashba spin-orbit interaction in graphene and zigzag nanoribbons. Phys. Rev. B. 2009;79:165442. doi: 10.1103/PhysRevB.79.165442. [DOI] [Google Scholar]
  • 55.Ezawa M. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett. 2012;109:055502. doi: 10.1103/PhysRevLett.109.055502. [DOI] [PubMed] [Google Scholar]
  • 56.Jiao Z, Yao Q, Zandvliet H. Tailoring and probing the quantum states of matter of 2d Dirac materials with a buckled honeycomb structure. Physica E: Low-dimens. Syst. Nanostruct. 2020;121:114113. doi: 10.1016/j.physe.2020.114113. [DOI] [Google Scholar]
  • 57.Alase A. Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter. 1. Springer Theses, Springer Nature Switzerland AG; 2019. [Google Scholar]
  • 58.Zak J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 1989;62:2747. doi: 10.1103/PhysRevLett.62.2747. [DOI] [PubMed] [Google Scholar]
  • 59.Pawlak R, Kisiel M, Klinovaja J, Meier T, Kawai S, Glatzel T, Loss D, Meyer E. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. npj Quantum Inf. 2016;2:16035. doi: 10.1038/npjqi.2016.35. [DOI] [Google Scholar]
  • 60.Campo VL, Ricco LS, Seridonio AC. Isolating Majorana fermions with finite Kitaev nanowires and temperature: Universality of the zero-bias conductance. Phys. Rev. B. 2017;96:045135. doi: 10.1103/PhysRevB.96.045135. [DOI] [Google Scholar]
  • 61.Ricco LS, Campo VL, Shelykh IA, Seridonio AC. Majorana oscillations modulated by fano interference and degree of nonlocality in a topological superconducting-nanowire-quantum-dot system. Phys. Rev. B. 2018;98:075142. doi: 10.1103/PhysRevB.98.075142. [DOI] [Google Scholar]
  • 62.Tsai W-F, Huang C-Y, Chang T-R, Lin H, Jeng H-T, Bansil A. Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat. Commun. 2013;4:1500. doi: 10.1038/ncomms2525. [DOI] [PubMed] [Google Scholar]
  • 63.Jiang P, Kang L, Tao X, Cao N, Hao H, Zheng X, Zhang L, Zeng Z. Robust generation of half-metallic transport and pure spin current with photogalvanic effect in zigzag silicene nanoribbons. J. Phys. Condens. Matter. 2019;31:495701. doi: 10.1088/1361-648x/ab3dd6. [DOI] [PubMed] [Google Scholar]
  • 64.Ihn T, Güttinger J, Molitor F, Schnez S, Schurtenberger E, Jacobsen A, Hellmüller S, Frey T, Dröscher S, Stampfer C, Ensslin K. Graphene single-electron transistors. Mater. Today. 2010;13:44. doi: 10.1016/S1369-7021(10)70033-X. [DOI] [Google Scholar]
  • 65.Niu W, Sopp S, Lodi A, Gee A, Kong F, Pei T, Gehring P, Nägele J, Lau CS, Ma J, Liu J, Narita A, Mol J, Burghard M, Müllen K, Mai Y, Feng X, Bogani L. Exceptionally clean single-electron transistors from solutions of molecular graphene nanoribbons. Nat. Mater. 2023;22:180. doi: 10.1038/s41563-022-01460-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U, Kastner MA. Kondo effect in a single-electron transistor. Nature. 1998;391:156. doi: 10.1038/34373. [DOI] [Google Scholar]
  • 67.Vernek E, Penteado PH, Seridonio AC, Egues JC. Subtle leakage of a Majorana mode into a quantum dot. Phys. Rev. B. 2014;89:165314. doi: 10.1103/PhysRevB.89.165314. [DOI] [Google Scholar]
  • 68.Karzig T, Knapp C, Lutchyn RM, Bonderson P, Hastings MB, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus CM, Freedman MH. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B. 2017;95:235305. doi: 10.1103/PhysRevB.95.235305. [DOI] [Google Scholar]
  • 69.Steiner JF, von Oppen F. Readout of Majorana qubits. Phys. Rev. Res. 2020;2:033255. doi: 10.1103/PhysRevResearch.2.033255. [DOI] [Google Scholar]
  • 70.Leijnse M, Flensberg K. Quantum information transfer between topological and spin qubit systems. Phys. Rev. Lett. 2011;107:210502. doi: 10.1103/PhysRevLett.107.210502. [DOI] [PubMed] [Google Scholar]
  • 71.Leijnse M, Flensberg K. Hybrid topological-spin qubit systems for two-qubit-spin gates. Phys. Rev. B. 2012;86:104511. doi: 10.1103/PhysRevB.86.104511. [DOI] [PubMed] [Google Scholar]
  • 72.Liu X, Li X, Deng D-L, Liu X-J, Das Sarma S. Majorana spintronics. Phys. Rev. B. 2016;94:014511. doi: 10.1103/PhysRevB.94.014511. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES