Abstract
The continual improvement in the field of medical diagnosis has led to the monopoly of using deep learning (DL)-based magnetic resonance imaging (MRI) for the diagnosis of knee injury related to meniscal injury, ligament injury including the cruciate ligaments, collateral ligaments and medial patella-femoral ligament, and cartilage injury. The present systematic review was done by PubMed and Directory of Open Access Journals (DOAJ), wherein we finalised 24 studies conducted on the accuracy of DL MRI studies for knee injury identification. The studies showed an accuracy of 72.5% to 100% indicating that DL MRI holds an equivalent performance as humans in decision-making and management of knee injuries. This further opens up future exploration for improving MRI-based diagnosis keeping in mind the limitations of verification bias and data imbalance in ground truth subjectivity.
Keywords: meniscus tear, ligamentous knee injury, persistent knee pain, magnetic resonance imaging, deep-learning
Introduction and background
The knee joint, one of the large complex joints, has been the topic of most discussions in view of the injuries to various anatomical structures - ligaments (anterior cruciate ligament, posterior cruciate ligament, medial collateral ligament and lateral collateral ligament), meniscus (medial or lateral) and cartilage [1,2]. Knee injuries are reported to affect nearly 244,000 people annually, according to an analysis that included National Health Fund (NHF) data from 2016-2019 [1]. The prevalence of knee pain was reported as 21.4% [3]. In an Indian study, including 517 patients who underwent primary anterior cruciate ligament reconstruction (ACLR), 70% had a meniscal injury and 50% had chondral damage [4]. Acute knee injury is generally caused because of direct trauma, or due to excess tension, sudden twists, collisions, awkward movements, falls, excessive force, and overuse of joints [5]. Shoe wear, training surface conditions, and training regimen are the extrinsic factors, whereas ligamentous laxity, muscle weakness, reduced muscle flexibility, and foot shape are the intrinsic factors [6]. The possible effects of knee injuries include tendinopathies and structural muscle injuries of the lower limb [7,8]. Early detection of ruptured ligament, meniscal tears, as well as cartilage lesions and consequent treatment, are necessary for management, which can also delay the onset of knee osteoarthritis following a knee injury [9].
For the diagnosis, arthroscopy remains the gold-standard modality. However, its use over time has been restricted and overpowered by newer non-invasive investigations like magnetic resonance imaging (MRI) [10]. However, diagnosis of knee injury by MRI can be difficult, with clinicians' experience being crucial in image interpretation and the best management of knee injuries is sometimes hampered by limitations of the human mind in interpreting the imaging reports by factors like a distraction, workload, subjectivity, image quality and knowledge [11]. Furthermore, clinical-diagnostic differences between orthopaedic surgeons and non-musculoskeletal radiologists are frequently seen in day-to-day clinical practice [12]. Considering the rising cases of knee injuries and sports injuries and the above-mentioned factors, the use of artificial intelligence (AI) has become rampant in medical practice, whereby certain diagnostic algorithms are created based on digital imaging data collection and interpolation. AI involves a technique that makes it possible for computers to complement human intelligence. The growth of AI is specifically being driven by deep learning (DL), which falls under the category of machine learning (ML) algorithms. There have been several documented uses of DL in image interpretation, including classifying skin carcinoma, detecting lung nodules, mammography cancer, and diabetic retinopathy. AI-powered technologies are anticipated to change the medical field as they increase the diagnostic accuracy of several diagnostic and therapeutic techniques [13]. A number of early DL investigations have shown improved performance over conventional ML processes and are even found to be superior to radiologists in the diagnosis of knee injuries [14]. The limitations of prior conducted similar systematic reviews were that they included other knee injuries like bony fractures [15] or failed to address the limitation and strengths of various AI in deciding the performance of the system [16]. Taking into account the emerging AI technology as well as increasing research in similar fields, in this systematic review we conducted a comprehensive analysis of the literature, encompassing all DL-based methodologies which are employed in knee injury diagnosis. The present systematic review aimed to identify the latest studies that evaluated the role of DL in MRI-based knee injury diagnosis. The main emphasis was laid on research that assessed knee ligamentous tear, meniscal tears or cartilaginous lesions.
Review
Methods
Literature Search
We conducted a thorough search of studies as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, wherein two primary databases, PubMed and Directory of Open Access Journals (DOAJ), were reviewed by two primary authors and the data was extracted by the third author. An electronic data search was conducted on the databases of PubMed and DOAJ over a period of the last 10 years of published studies with specified dates from January 2013 till January 2023. For the database search, Medical Subject Headings (MeSH) keywords were used as per the PubMed dictionary separated by Boolean expression: "knee"[MeSH Terms] OR "knee joint"[MeSH Terms] AND "magnetic resonance imaging"[MeSH Terms] AND "machine learning"[MeSH Terms] in “All fields” as tag terms. The text words used in DOAJ were the same as MeSH terms used in PubMed without any additional filters. The articles were found to be eligible based on the title and the abstract. The full text of the articles was studied only after verification of their abstract and the title and the inclusion criteria (Figure 1).
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Flowchart.
DOAJ: Directory of Open Access Journals
Inclusion Criteria
Only full texts and papers were chosen for the study. English articles were included which were published over the last 10 years from January 2013 till January 2023. Studies that diagnosed knee injury based on the MRI deep learning AI-based algorithms and studies that mentioned the accuracy of the performance of AI algorithms were included.
Exclusion Criteria
Exclusion criteria were articles published before January 2013, articles dealing with injuries other than knee injuries, studies published on animals, studies other than original articles, i.e. review articles, systematic research or meta-analysis, studies written in a language other than English, and editorial commentaries and book chapters.
Data Extraction
After downloading all the studies, the data was extracted and put in a table in Microsoft Spreadsheet. The information extracted from each article included the first name of the author, the year of publication, the description of data, the learning algorithm used, the sample size, the type of injury, and the accuracy of the DL model for diagnosis of a knee injury.
Assessment of Risk of Bias
The assessment of the risk of bias was done by using the ROBINS-I tool which consists of seven parameters that include selection bias, measurement bias, attrition bias, confounding bias, performance bias, and outcome reporting bias. A total score categorized as low, moderate, and high was classified, wherein the presence of none of these confounding factors or one of these confounding factors led to the classification of low and two or more up to five led to the classification of moderate and five or more up to seven led to the classification of high risk of bias as for the eligible studies is shown in Table 1 [17].
Table 1. Risk of Bias Assessment.
L: Low, M: Moderate
Name of the author | Confounding bias | Selection bias | Measurement on interventions bias | Intended interventions (performance bias) | Attrition bias | Measurement bias | Outcome reporting bias | Overall Risk of bias |
Li J et al, 2022 [18] | - | + | + | + | - | - | Y | M |
Li Z et al, 2021 [19] | - | - | - | - | - | - | - | L |
Awan et al, 2021 [20] | - | + | - | - | + | - | - | M |
Jeon et al, 2021 [21] | - | + | - | - | + | - | - | M |
Rizk et al, 2021 [22] | - | - | - | - | - | - | - | L |
Dai et al, 2021 [23] | + | - | + | + | - | - | + | M |
Astuto et al, 2021 [24] | - | + | - | - | + | - | - | M |
Fritz et al, 2020 [25] | + | - | - | + | + | - | + | M |
Namiri et al, 2020 [26] | - | - | - | - | - | - | - | L |
Zhang et al, 2020 [27] | - | - | + | + | - | - | + | M |
Germann et al, 2020 [28] | + | - | - | + | + | - | + | M |
Azcona et al, 2020 [29] | - | - | - | - | - | + | - | L |
Chang et al, 2019 [30] | - | + | - | - | + | - | - | M |
Liu et al, 2019 [31] | - | + | - | - | + | - | - | M |
Couteaux et al, 2019 [32] | - | - | + | + | - | - | + | M |
Pedoia et al, 2019 [33] | - | - | - | - | - | - | - | L |
Roblot et al, 2019 [34] | - | + | + | - | - | - | + | M |
Bien N et al, 2018 [13] | + | - | - | + | + | - | + | M |
Liu et al, 2018 [35] | + | - | + | - | - | - | + | M |
Štajduhar et al, 2017 [36] | - | + | - | - | + | - | - | M |
Mazlan et al, 2017 [37] | + | - | - | - | + | - | - | M |
Zarandi et al, 2016 [38] | - | - | - | - | - | - | - | L |
Fu et al, 2013 [39] | + | - | - | - | - | - | - | L |
Abdullah et al, 2013 [40] | - | - | + | + | - | - | + | M |
Results
Search Results
Based on our search, we identified 203 articles in PubMed, 40 articles in DOAJ, and two articles from other references of the selected articles. Among them, there were 20 duplicate articles, which were excluded, and 225 articles were screened by two primary authors. Among them, 188 were excluded based on reasons that fell into the exclusion criteria and 37 full-text articles were downloaded. They were thoroughly screened, and 24 out of them were selected, and 13 were excluded since they did not have sufficient data to qualify for the systematic review. Finally, 24 studies were included in the systematic review, the characteristics of which are shown in Table 2.
Table 2. Study Characteristics.
DL: Deep Learning; ANN: Artificial Neural Networks; BP-ANN: Back Propagation ANN; CNN: Convolutional Neural Network; DCNN: Deep CNN; GIST: Generalized Search Tree; HOG: Histogram of Oriented Gradient; IT2FCM: Interval Type-2 Fuzzy C-Means; K-NN: K-Nearest Neighbor; PNN: Perceptron Neural Network; R-CNN: Region-Based CNN; SVM: Support Vector Machine; ACL: Anterior Cruciate Ligament
S.no. | Author | N | Patient injury | DL model (AI model used) | MRI used (Tesla) | Accuracy of DL | |
1. | Li J et al, 2022 [18] | 200 | Meniscus tear | Mask R-CNN | 1.5 T and 3.0 T | Healthy: 87.50% Torn: 86.96% Degenerated meniscus: 84.78% | |
2. | Li Z et al, 2021 [19] | 30 | ACL | CNN | 2.0 | 92.17% | |
3. | Awan et al, 2021 [20] | 917 images | ACL tear | CNN | 1.5 T | Partial ACL tear: 0.97; full ACL tear: 0.99 | |
4 | Jeon et al, 2021 [21] | 2540 | ACL tear | 3D CNN | 3 T & 1.5 T | 0.98 | |
5 | Rizk et al, 2021 [22] | 7903 | Meniscus tear | 3D CNN | 1-3 T | Medial = 0.93, Lateral = 0.84 | |
6 | Dai et al, 2021 [23] | 1714 | ACL tear, Meniscus tear | TransMed | 3 T & 1.5 T | 94.9%/0.98, 85.3%/0.95 | |
7 | Astuto et al, 2021 [24] | 294 | ACL tear—Meniscus tear—Cartilage lesion | 3D CNN | 3T | from 0.83 to 0.93 | |
8 | Fritz et al, 2020 [25] | 100 | Meniscus tear | DCNN | 1.5 T (64%)–3 T (36%) | Medial = (86%/0.88), Lateral = (84%/0.78), Overall = (0.96) | |
9 | Namiri et al, 2020 [26] | 224 | ACL tear | CNN | 3T | 3Dmodel = (89%/sensitivity of 89% and specificity of 88%), 2Dmodel = (92%/sensitivity of 93% and specificity of 90%) | |
10 | Zhang et al, 2020 [27] | 408 | ACL tear | CNN | 1.5 T (74%)–3 T (26%) | 95.7% | |
11 | Germann et al, 2020 [28] | 512 | ACL tear | DCNN | 1.5 T–3 T | 0.94 | |
12 | Azcona et al, 2020 [29] | - | ACL tear, Meniscus tear | CNN | 1.5 T, 3 T | 0.96, 0.91 | |
13 | Chang et al, 2019 [30] | 260 | ACL tear | CNN | 1.5 T–3 T | 96.7%/0.97 | |
14 | Liu et al, 2019 [31] | 175 | ACL tear | CNN | N/A | 0.98 | |
15 | Couteaux et al, 2019 [32] | 1128 images | Meniscus tear | CNN | N/A | 0.90 | |
16 | Pedoia et al, 2019 [33] | 302 | Meniscus tear | 2D U-Net, CNN | 3T | Sensitivity of 89.81% and specificity of 81.98% | |
17 | Roblot et al, 2019 [34] | 1123 images | Meniscus tear | CNN | N/A | 72.5%/0.85 | |
18 | Bien N et al, 2018 [13] | Training set: 1,088 patients Tuning set: 111 patients Validation set: 113 patients | ACL tear—Meniscus tear— Abnormalities | CNN | 3 T (56.6%)–1.5 T (43.4%) | 86.7%/0.97–72.5%/0.85– 0.94 | |
19 | Liu et al, 2018 [35] | 175 | Cartilage lesion | CNN | 3T | 0.92 | |
20 | Štajduhar et al, 2017 [36] | 969 images | ACL tear | HOG, GIST, RF | 1.5T | (Injury detection problem, complete rupture) = (0.89, 0.94), (0.88, 0.94), (0.889, 0.91), (0.88, 0.90) respectively with the models | |
21 | Mazlan et al, 2017 [37] | 300 images | ACL tear | SVM | N/A | 100% | |
22 | Zarandi et al, 2016 [38] | 28 | Meniscus tear | IT2FCM, PNN | N/A | 90%,78% | |
23 | Fu et al, 2013 [39] | 166 images | Meniscus tear | SVM | N/A | SVM model: 0.73 SFFS + SVM: 0.91 | |
24 | Abdullah et al, 2013 [40] | 90 images | ACL tear | BP ANN, K-NN | N/A | BP ANN: 94.44% k-NN: 87.83% |
Study characteristics
The countries where the included studies were conducted were France [22,32,34], Switzerland [25,28], Ireland [29], USA [13,20,24,26,30,31,33,35], Turkey [36] and Asia [18,19,21,23,27,37-40]. The study period in those studies varied from five years to 18 years.
Study outcomes
Anterior cruciate ligament (ACL) injuries were present in 16 studies [13,18,20,21,23,24,26-31,36,37,40], meniscus injuries in 12 studies [13,19,22-25,29,32-34,38-40], and cartilage lesion in two studies [24,35].
Accuracy of the artificial intelligence model
The overall accuracy of the AI model was 72.5% to 100% for knee injuries.
Risk of bias
In seven studies, the risk of bias was low [19,22,26,29,33,38,39] and in the remaining, i.e. 17 studies, the moderate risk was present [13,18,20,21,23-25,27,28,30-32,34-37,40].
Discussion
The present systematic review holds significance as it summarized all the studies that used deep learning MRI models for the diagnosis of knee injuries. Deep learning-based MRI is basically a part of artificial intelligence which is expanded in various domains in the entire world [41]. Performance and accuracy as seen among the studies ranged from 72.5% to 100% which is effective enough for expanding the medical experts’ knowledge and diagnostic skills for knee injuries. Our findings were in line with a previous systematic review conducted by Siouras et al. [41], who also quoted diagnostic accuracy of 72.5-100%, but the review was conducted on 22 studies. Another systematic review was conducted by Kunze et al. [16] including 11 studies, among which five evaluated ACL tears, five assessed meniscal tears, and one study assessed both where the area under the curve (AUC) for detecting ACL tear was in the range of 0.895 to 0.980 and for meniscus tear was 0.847 to 0.910. The use of deep learning has come frequently into practice since there is no gold standard scoring system to diagnose knee injuries. Artificial intelligence complements the human mind in a machine-operated way where the probability of diagnosing the injured knee becomes higher. This has been mainly based on the data augmentation and data acquiring for ACL, meniscal and cartilage injuries. Moreover, this has become possible through various image transformations which include shifting, and flipping rotations, thereby expanding the dataset and improving the performance of DL-based learning and diagnosis [41]. We noticed that studies reported a difference in the performance of deep learning MRI-based diagnosis accuracy and this variability in the performance of different studies might be because of the region of interest that may appear slightly different within an image and because of the different ratios and sizes. The lowest accuracy of 72.5% was reported by Roblot et al. [34] and Bien et al. [13], which was primarily on the diagnosis of meniscus tears using convolutional neural network, while the highest accuracy was reported by Mazlan et al. [37] of 100%, which was specifically on ACL tears with the AI model of support vector machine (SVM) being used which gives high data gap between injury data (actual data) and non-injury data. This shows that variability in performance can be due to data imbalance whereby patients have different grades of knee injuries, and the application of a uniform algorithm may not be as effective. So, multiple datasets are needed whereby deep learning can be effectively improved by expanding the MRI protocol thereby allowing it to perform in equivalence to the human mind - stressing the role of different AI models to be used and evaluation of the wide type of knee injuries to improve on the accuracy. The present systematic review holds strength in this regard since it covers many regions allowing for data pooling of three categories of knee injuries - thereby representing the multiset of data with the elimination of the bias and determining the effective performance of deep learning-based MRI.
Limitations
The present study was a systematic review, but it has certain limitations. Firstly, the meta-analysis was not done. Secondly, studies do not assess the combined use of machine learning and human learning. Thirdly, the gold standard diagnostic arthroscopy was not done in all the studies, which may have restricted the clinical applicability of the findings of the present study. In view of these limitations, future studies are recommended to expand the datasets and test the accuracy of machine deep learning-based MRI for the detection of knee injuries, especially meniscal, ACL, and cartilage injuries, and compare them with the gold standard non-invasive tests so that their applicability can be put to use soon. This shall help in the future to cover up for the workload which is expanding by leaps and bounds, whereby radiological imaging data has been expanding, but the number of radiologists is not increasing proportionally. The decision-making process is also hampered on this account. Thus AI systems can be a boon to humans. This is also essential because medical imaging is very sensitive in nature whereby quality and resolution demand high performance with minimal differences in diagnosing specific knee injuries. Training and specialization of the human eye and mind may require long experience before one may come to terms with machine-based learning [12-14].
Future directions
The findings of the present study show the different applications of deep learning MRI used till now, and there is still so much scope to fully exploit the full potential of this data where newer algorithms can be laid down by individual hospitals for making trustworthy detection systems for knee injuries. This demands further AI expandability and a collaboration of medical and IT fields to reach precision medicine.
Conclusions
Deep-based learning methods have come a long way, showing performance accuracy of more than 75%, leading to significant use in clinical employment. However, there are so many algorithms to be laid down, and individual datasets need to be expanded by multiregional studies whereby deep-based MRI detection can become a norm in every hospital, thereby retaining the high-performance standards and yielding faster diagnosis and management.
Appendices
Table 3. List of articles searched from PubMed database.
PMID | Title | Authors | Citation | First Author | Journal/Book | Publication Year | Create Date | PMCID | NIHMS ID | DOI |
34804143 | Emergence of Deep Learning in Knee Osteoarthritis Diagnosis | Yeoh PSQ, Lai KW, Goh SL, Hasikin K, Hum YC, Tee YK, Dhanalakshmi S. | Comput Intell Neurosci. 2021 Nov 10;2021:4931437. doi: 10.1155/2021/4931437. eCollection 2021. | Yeoh PSQ | Comput Intell Neurosci | 2021 | 2021/11/22 | PMC8598325 | 10.1155/2021/4931437 | |
35204625 | Knee Injury Detection Using Deep Learning on MRI Studies: A Systematic Review | Siouras A, Moustakidis S, Giannakidis A, Chalatsis G, Liampas I, Vlychou M, Hantes M, Tasoulis S, Tsaopoulos D. | Diagnostics (Basel). 2022 Feb 19;12(2):537. doi: 10.3390/diagnostics12020537. | Siouras A | Diagnostics (Basel) | 2022 | 2022/02/25 | PMC8871256 | 10.3390/diagnostics12020537 | |
32722605 | A Comparative Systematic Literature Review on Knee Bone Reports from MRI, X-rays and CT Scans Using Deep Learning and Machine Learning Methodologies | Khalid H, Hussain M, Al Ghamdi MA, Khalid T, Khalid K, Khan MA, Fatima K, Masood K, Almotiri SH, Farooq MS, Ahmed A. | Diagnostics (Basel). 2020 Jul 26;10(8):518. doi: 10.3390/diagnostics10080518. | Khalid H | Diagnostics (Basel) | 2020 | 2020/07/30 | PMC7460189 | 10.3390/diagnostics10080518 | |
35184211 | Inferring pediatric knee skeletal maturity from MRI using deep learning | Zech JR, Carotenuto G, Jaramillo D. | Skeletal Radiol. 2022 Aug;51(8):1671-1677. doi: 10.1007/s00256-022-04010-y. Epub 2022 Feb 20. | Zech JR | Skeletal Radiol | 2022 | 2022/02/20 | 10.1007/s00256-022-04010-y | ||
35529263 | Deep Learning-Based Multimodal 3 T MRI for the Diagnosis of Knee Osteoarthritis | Hu Y, Tang J, Zhao S, Li Y. | Comput Math Methods Med. 2022 Apr 29;2022:7643487. doi: 10.1155/2022/7643487. eCollection 2022. | Hu Y | Comput Math Methods Med | 2022 | 2022/05/09 | PMC9076302 | 10.1155/2022/7643487 | |
36648347 | Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI | Johnson PM, Lin DJ, Zbontar J, Zitnick CL, Sriram A, Muckley M, Babb JS, Kline M, Ciavarra G, Alaia E, Samim M, Walter WR, Calderon L, Pock T, Sodickson DK, Recht MP, Knoll F. | Radiology. 2023 Apr;307(2):e220425. doi: 10.1148/radiol.220425. Epub 2023 Jan 17. | Johnson PM | Radiology | 2023 | 2023/01/17 | PMC10102623 | 10.1148/radiol.220425 | |
35776434 | Deep Learning-Enhanced Parallel Imaging and Simultaneous Multislice Acceleration Reconstruction in Knee MRI | Kim M, Lee SM, Park C, Lee D, Kim KS, Jeong HS, Kim S, Choi MH, Nickel D. | Invest Radiol. 2022 Dec 1;57(12):826-833. doi: 10.1097/RLI.0000000000000900. Epub 2022 Jul 1. | Kim M | Invest Radiol | 2022 | 2022/07/01 | 10.1097/RLI.0000000000000900 | ||
35262842 | Automatic detection and classification of knee osteoarthritis using deep learning approach | Abdullah SS, Rajasekaran MP. | Radiol Med. 2022 Apr;127(4):398-406. doi: 10.1007/s11547-022-01476-7. Epub 2022 Mar 9. | Abdullah SS | Radiol Med | 2022 | 2022/03/09 | 10.1007/s11547-022-01476-7 | ||
34142088 | Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies | Astuto B, Flament I, K Namiri N, Shah R, Bharadwaj U, M Link T, D Bucknor M, Pedoia V, Majumdar S. | Radiol Artif Intell. 2021 Jan 20;3(3):e200165. doi: 10.1148/ryai.2021200165. eCollection 2021 May. | Astuto B | Radiol Artif Intell | 2021 | 2021/06/18 | PMC8166108 | 10.1148/ryai.2021200165 | |
34324223 | Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the Osteoarthritis Initiative | Panfilov E, Tiulpin A, Nieminen MT, Saarakkala S, Casula V. | J Orthop Res. 2022 May;40(5):1113-1124. doi: 10.1002/jor.25150. Epub 2021 Aug 6. | Panfilov E | J Orthop Res | 2022 | 2021/07/29 | 10.1002/jor.25150 | ||
35726103 | Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation | Tran A, Lassalle L, Zille P, Guillin R, Pluot E, Adam C, Charachon M, Brat H, Wallaert M, d'Assignies G, Rizk B. | Eur Radiol. 2022 Dec;32(12):8394-8403. doi: 10.1007/s00330-022-08923-z. Epub 2022 Jun 21. | Tran A | Eur Radiol | 2022 | 2022/06/21 | 10.1007/s00330-022-08923-z | ||
32755163 | Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study | Recht MP, Zbontar J, Sodickson DK, Knoll F, Yakubova N, Sriram A, Murrell T, Defazio A, Rabbat M, Rybak L, Kline M, Ciavarra G, Alaia EF, Samim M, Walter WR, Lin DJ, Lui YW, Muckley M, Huang Z, Johnson P, Stern R, Zitnick CL. | AJR Am J Roentgenol. 2020 Dec;215(6):1421-1429. doi: 10.2214/AJR.20.23313. Epub 2020 Oct 14. | Recht MP | AJR Am J Roentgenol | 2020 | 2020/08/07 | PMC8209682 | NIHMS1707476 | 10.2214/AJR.20.23313 |
34663440 | A deep learning method for predicting knee osteoarthritis radiographic progression from MRI | Schiratti JB, Dubois R, Herent P, Cahané D, Dachary J, Clozel T, Wainrib G, Keime-Guibert F, Lalande A, Pueyo M, Guillier R, Gabarroca C, Moingeon P. | Arthritis Res Ther. 2021 Oct 18;23(1):262. doi: 10.1186/s13075-021-02634-4. | Schiratti JB | Arthritis Res Ther | 2021 | 2021/10/19 | PMC8521982 | 10.1186/s13075-021-02634-4 | |
31877380 | Osteoarthritis year in review 2019: imaging | Kijowski R, Demehri S, Roemer F, Guermazi A. | Osteoarthritis Cartilage. 2020 Mar;28(3):285-295. doi: 10.1016/j.joca.2019.11.009. Epub 2019 Dec 23. | Kijowski R | Osteoarthritis Cartilage | 2020 | 2019/12/27 | 10.1016/j.joca.2019.11.009 | ||
31755191 | Rapid Knee MRI Acquisition and Analysis Techniques for Imaging Osteoarthritis | Chaudhari AS, Kogan F, Pedoia V, Majumdar S, Gold GE, Hargreaves BA. | J Magn Reson Imaging. 2020 Nov;52(5):1321-1339. doi: 10.1002/jmri.26991. Epub 2019 Nov 21. | Chaudhari AS | J Magn Reson Imaging | 2020 | 2019/11/23 | PMC7925938 | NIHMS1670032 | 10.1002/jmri.26991 |
34567478 | Deep Learning-Based Image Feature with Arthroscopy-Aided Early Diagnosis and Treatment of Meniscus Injury of Knee Joint | Li Z, Ren S, Zhang X, Bai L, Jiang C, Wu J, Zhang W. | J Healthc Eng. 2021 Sep 17;2021:2254594. doi: 10.1155/2021/2254594. eCollection 2021. | Li Z | J Healthc Eng | 2021 | 2021/09/27 | PMC8463205 | 10.1155/2021/2254594 | |
30481176 | Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet | Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, Bereket M, Patel BN, Yeom KW, Shpanskaya K, Halabi S, Zucker E, Fanton G, Amanatullah DF, Beaulieu CF, Riley GM, Stewart RJ, Blankenberg FG, Larson DB, Jones RH, Langlotz CP, Ng AY, Lungren MP. | PLoS Med. 2018 Nov 27;15(11):e1002699. doi: 10.1371/journal.pmed.1002699. eCollection 2018 Nov. | Bien N | PLoS Med | 2018 | 2018/11/28 | PMC6258509 | 10.1371/journal.pmed.1002699 | |
33714850 | Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation | Rizk B, Brat H, Zille P, Guillin R, Pouchy C, Adam C, Ardon R, d'Assignies G. | Phys Med. 2021 Mar;83:64-71. doi: 10.1016/j.ejmp.2021.02.010. Epub 2021 Mar 11. | Rizk B | Phys Med | 2021 | 2021/03/14 | 10.1016/j.ejmp.2021.02.010 | ||
34211738 | Applicability of deep learning-based reconstruction trained by brain and knee 3T MRI to lumbar 1.5T MRI | Kashiwagi N, Tanaka H, Yamashita Y, Takahashi H, Kassai Y, Fujiwara M, Tomiyama N. | Acta Radiol Open. 2021 Jun 18;10(6):20584601211023939. doi: 10.1177/20584601211023939. eCollection 2021 Jun. | Kashiwagi N | Acta Radiol Open | 2021 | 2021/07/02 | PMC8216362 | 10.1177/20584601211023939 | |
37151912 | Magnetic resonance imaging assessments for knee segmentation and their use in combination with machine/deep learning as predictors of early osteoarthritis diagnosis and prognosis | Martel-Pelletier J, Paiement P, Pelletier JP. | Ther Adv Musculoskelet Dis. 2023 Apr 28;15:1759720X231165560. doi: 10.1177/1759720X231165560. eCollection 2023. | Martel-Pelletier J | Ther Adv Musculoskelet Dis | 2023 | 2023/05/08 | PMC10155034 | 10.1177/1759720X231165560 | |
35852498 | Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry | Schmidt AM, Desai AD, Watkins LE, Crowder HA, Black MS, Mazzoli V, Rubin EB, Lu Q, MacKay JW, Boutin RD, Kogan F, Gold GE, Hargreaves BA, Chaudhari AS. | J Magn Reson Imaging. 2023 Apr;57(4):1029-1039. doi: 10.1002/jmri.28365. Epub 2022 Jul 19. | Schmidt AM | J Magn Reson Imaging | 2023 | 2022/07/19 | PMC9849481 | NIHMS1822687 | 10.1002/jmri.28365 |
34347157 | Deep learning in knee imaging: a systematic review utilizing a Checklist for Artificial Intelligence in Medical Imaging (CLAIM) | Si L, Zhong J, Huo J, Xuan K, Zhuang Z, Hu Y, Wang Q, Zhang H, Yao W. | Eur Radiol. 2022 Feb;32(2):1353-1361. doi: 10.1007/s00330-021-08190-4. Epub 2021 Aug 4. | Si L | Eur Radiol | 2022 | 2021/08/04 | 10.1007/s00330-021-08190-4 | ||
33331995 | Automated age estimation of young individuals based on 3D knee MRI using deep learning | Mauer MA, Well EJ, Herrmann J, Groth M, Morlock MM, Maas R, Säring D. | Int J Legal Med. 2021 Mar;135(2):649-663. doi: 10.1007/s00414-020-02465-z. Epub 2020 Dec 17. | Mauer MA | Int J Legal Med | 2021 | 2020/12/17 | PMC7870623 | 10.1007/s00414-020-02465-z | |
34157062 | Erratum: Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies | Astuto B, Flament I, Namiri NK, Shah R, Bharadwaj U, Link TM, Bucknor MD, Pedoia V, Majumdar S. | Radiol Artif Intell. 2021 May 19;3(3):e219001. doi: 10.1148/ryai.2021219001. eCollection 2021 May. | Astuto B | Radiol Artif Intell | 2021 | 2021/06/22 | PMC8166114 | 10.1148/ryai.2021219001 | |
35725760 | Diagnostic advantage of thin slice 2D MRI and multiplanar reconstruction of the knee joint using deep learning based denoising approach | Kakigi T, Sakamoto R, Tagawa H, Kuriyama S, Goto Y, Nambu M, Sagawa H, Numamoto H, Miyake KK, Saga T, Matsuda S, Nakamoto Y. | Sci Rep. 2022 Jun 20;12(1):10362. doi: 10.1038/s41598-022-14190-1. | Kakigi T | Sci Rep | 2022 | 2022/06/20 | PMC9209466 | 10.1038/s41598-022-14190-1 | |
36328943 | End-to-end deep learning model for segmentation and severity staging of anterior cruciate ligament injuries from MRI | Dung NT, Thuan NH, Van Dung T, Van Nho L, Tri NM, Vy VPT, Hoang LN, Phat NT, Chuong DA, Dang LH. | Diagn Interv Imaging. 2023 Mar;104(3):133-141. doi: 10.1016/j.diii.2022.10.010. Epub 2022 Oct 31. | Dung NT | Diagn Interv Imaging | 2023 | 2022/11/03 | 10.1016/j.diii.2022.10.010 | ||
35389046 | Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol | Herrmann J, Keller G, Gassenmaier S, Nickel D, Koerzdoerfer G, Mostapha M, Almansour H, Afat S, Othman AE. | Eur Radiol. 2022 Sep;32(9):6215-6229. doi: 10.1007/s00330-022-08753-z. Epub 2022 Apr 7. | Herrmann J | Eur Radiol | 2022 | 2022/04/07 | PMC9381615 | 10.1007/s00330-022-08753-z | |
35373388 | High fidelity deep learning-based MRI reconstruction with instance-wise discriminative feature matching loss | Wang K, Tamir JI, De Goyeneche A, Wollner U, Brada R, Yu SX, Lustig M. | Magn Reson Med. 2022 Jul;88(1):476-491. doi: 10.1002/mrm.29227. Epub 2022 Apr 3. | Wang K | Magn Reson Med | 2022 | 2022/04/04 | 10.1002/mrm.29227 | ||
35698440 | Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis from Magnetic Resonance (MR) Images Using a Deep Learning Model | Tang X, Guo D, Liu A, Wu D, Liu J, Xu N, Qin Y. | Med Sci Monit. 2022 Jun 14;28:e936733. doi: 10.12659/MSM.936733. | Tang X | Med Sci Monit | 2022 | 2022/06/14 | PMC9206408 | 10.12659/MSM.936733 | |
36791514 | Auto-segmentation of the tibia and femur from knee MR images via deep learning and its application to cartilage strain and recovery | Kim-Wang SY, Bradley PX, Cutcliffe HC, Collins AT, Crook BS, Paranjape CS, Spritzer CE, DeFrate LE. | J Biomech. 2023 Mar;149:111473. doi: 10.1016/j.jbiomech.2023.111473. Epub 2023 Jan 26. | Kim-Wang SY | J Biomech | 2023 | 2023/02/15 | PMC10281551 | NIHMS1873960 | 10.1016/j.jbiomech.2023.111473 |
33897991 | DL-MRI: A Unified Framework of Deep Learning-Based MRI Super Resolution | Liu H, Liu J, Li J, Pan JS, Yu X. | J Healthc Eng. 2021 Apr 9;2021:5594649. doi: 10.1155/2021/5594649. eCollection 2021. | Liu H | J Healthc Eng | 2021 | 2021/04/26 | PMC8052167 | 10.1155/2021/5594649 | |
35727152 | Role of Thigh Muscle Changes in Knee Osteoarthritis Outcomes: Osteoarthritis Initiative Data | Mohajer B, Dolatshahi M, Moradi K, Najafzadeh N, Eng J, Zikria B, Wan M, Cao X, Roemer FW, Guermazi A, Demehri S. | Radiology. 2022 Oct;305(1):169-178. doi: 10.1148/radiol.212771. Epub 2022 Jun 21. | Mohajer B | Radiology | 2022 | 2022/06/21 | PMC9524577 | 10.1148/radiol.212771 | |
34496667 | Open Source Software for Automatic Subregional Assessment of Knee Cartilage Degradation Using Quantitative T2 Relaxometry and Deep Learning | Thomas KA, Krzemiński D, Kidziński Ł, Paul R, Rubin EB, Halilaj E, Black MS, Chaudhari A, Gold GE, Delp SL. | Cartilage. 2021 Dec;13(1_suppl):747S-756S. doi: 10.1177/19476035211042406. Epub 2021 Sep 8. | Thomas KA | Cartilage | 2021 | 2021/09/09 | PMC8808775 | 10.1177/19476035211042406 | |
33973737 | Subchondral Bone Length in Knee Osteoarthritis: A Deep Learning-Derived Imaging Measure and Its Association With Radiographic and Clinical Outcomes | Chang GH, Park LK, Le NA, Jhun RS, Surendran T, Lai J, Seo H, Promchotichai N, Yoon G, Scalera J, Capellini TD, Felson DT, Kolachalama VB. | Arthritis Rheumatol. 2021 Dec;73(12):2240-2248. doi: 10.1002/art.41808. Epub 2021 Oct 29. | Chang GH | Arthritis Rheumatol | 2021 | 2021/05/11 | PMC8581065 | NIHMS1703971 | 10.1002/art.41808 |
36044484 | One-Dimensional Deep Low-Rank and Sparse Network for Accelerated MRI | Wang Z, Qian C, Guo D, Sun H, Li R, Zhao B, Qu X. | IEEE Trans Med Imaging. 2023 Jan;42(1):79-90. doi: 10.1109/TMI.2022.3203312. Epub 2022 Dec 29. | Wang Z | IEEE Trans Med Imaging | 2023 | 2022/08/31 | 10.1109/TMI.2022.3203312 | ||
35870296 | Deep learning solution for medical image localization and orientation detection | Zhao Y, Zeng K, Zhao Y, Bhatia P, Ranganath M, Kozhikkavil ML, Li C, Hermosillo G. | Med Image Anal. 2022 Oct;81:102529. doi: 10.1016/j.media.2022.102529. Epub 2022 Jul 6. | Zhao Y | Med Image Anal | 2022 | 2022/07/23 | 10.1016/j.media.2022.102529 | ||
35795003 | Alternating Learning Approach for Variational Networks and Undersampling Pattern in Parallel MRI Applications | Zibetti MVW, Knoll F, Regatte RR. | IEEE Trans Comput Imaging. 2022;8:449-461. doi: 10.1109/tci.2022.3176129. Epub 2022 May 20. | Zibetti MVW | IEEE Trans Comput Imaging | 2022 | 2022/07/07 | PMC9252023 | NIHMS1815214 | 10.1109/tci.2022.3176129 |
29582464 | Super-resolution musculoskeletal MRI using deep learning | Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, Lee JH, Gold GE, Hargreaves BA. | Magn Reson Med. 2018 Nov;80(5):2139-2154. doi: 10.1002/mrm.27178. Epub 2018 Mar 26. | Chaudhari AS | Magn Reson Med | 2018 | 2018/03/28 | PMC6107420 | NIHMS949716 | 10.1002/mrm.27178 |
36564952 | Editorial for "Deep-Learning-Based Contrast Synthesis From MRF Parameter Maps in the Knee Joint" | Singh A. | J Magn Reson Imaging. 2023 Aug;58(2):569-570. doi: 10.1002/jmri.28575. Epub 2022 Dec 23. | Singh A | J Magn Reson Imaging | 2023 | 2022/12/24 | 10.1002/jmri.28575 | ||
36562500 | Deep-Learning-Based Contrast Synthesis From MRF Parameter Maps in the Knee Joint | Nykänen O, Nevalainen M, Casula V, Isosalo A, Inkinen SI, Nikki M, Lattanzi R, Cloos MA, Nissi MJ, Nieminen MT. | J Magn Reson Imaging. 2023 Aug;58(2):559-568. doi: 10.1002/jmri.28573. Epub 2022 Dec 23. | Nykänen O | J Magn Reson Imaging | 2023 | 2022/12/23 | PMC10287835 | NIHMS1856970 | 10.1002/jmri.28573 |
34035386 | Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis | Namiri NK, Lee J, Astuto B, Liu F, Shah R, Majumdar S, Pedoia V. | Sci Rep. 2021 May 25;11(1):10915. doi: 10.1038/s41598-021-90292-6. | Namiri NK | Sci Rep | 2021 | 2021/05/26 | PMC8149826 | 10.1038/s41598-021-90292-6 | |
34138986 | Putting the Pieces Together: Deep Learning for Knee MRI Multitissue Abnormality Detection and Severity Grading | D Li M, Y Chang C. | Radiol Artif Intell. 2021 Apr 14;3(3):e210022. doi: 10.1148/ryai.2021210022. eCollection 2021 May. | D Li M | Radiol Artif Intell | 2021 | 2021/06/17 | PMC8204128 | 10.1148/ryai.2021210022 | |
35792956 | Ensemble deep learning model for predicting anterior cruciate ligament tear from lateral knee radiograph | Kim DH, Chai JW, Kang JH, Lee JH, Kim HJ, Seo J, Choi JW. | Skeletal Radiol. 2022 Dec;51(12):2269-2279. doi: 10.1007/s00256-022-04081-x. Epub 2022 Jun 9. | Kim DH | Skeletal Radiol | 2022 | 2022/07/06 | 10.1007/s00256-022-04081-x | ||
31804183 | Age Assessment of Youth and Young Adults Using Magnetic Resonance Imaging of the Knee: A Deep Learning Approach | Dallora AL, Berglund JS, Brogren M, Kvist O, Diaz Ruiz S, Dübbel A, Anderberg P. | JMIR Med Inform. 2019 Dec 5;7(4):e16291. doi: 10.2196/16291. | Dallora AL | JMIR Med Inform | 2019 | 2019/12/06 | PMC6923761 | 10.2196/16291 | |
36624404 | Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study | Akai H, Yasaka K, Sugawara H, Tajima T, Kamitani M, Furuta T, Akahane M, Yoshioka N, Ohtomo K, Abe O, Kiryu S. | BMC Med Imaging. 2023 Jan 9;23(1):5. doi: 10.1186/s12880-023-00962-2. | Akai H | BMC Med Imaging | 2023 | 2023/01/09 | PMC9827641 | 10.1186/s12880-023-00962-2 | |
35752117 | Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI | Khan S, Azam B, Yao Y, Chen W. | Comput Methods Programs Biomed. 2022 Jul;222:106963. doi: 10.1016/j.cmpb.2022.106963. Epub 2022 Jun 17. | Khan S | Comput Methods Programs Biomed | 2022 | 2022/06/25 | 10.1016/j.cmpb.2022.106963 | ||
34003757 | Interpretable and Lightweight 3-D Deep Learning Model for Automated ACL Diagnosis | Jeon Y, Yoshino K, Hagiwara S, Watanabe A, Quek ST, Yoshioka H, Feng M. | IEEE J Biomed Health Inform. 2021 Jul;25(7):2388-2397. doi: 10.1109/JBHI.2021.3081355. Epub 2021 Jul 27. | Jeon Y | IEEE J Biomed Health Inform | 2021 | 2021/05/18 | 10.1109/JBHI.2021.3081355 | ||
34441418 | Feasibility and Implementation of a Deep Learning MR Reconstruction for TSE Sequences in Musculoskeletal Imaging | Herrmann J, Koerzdoerfer G, Nickel D, Mostapha M, Nadar M, Gassenmaier S, Kuestner T, Othman AE. | Diagnostics (Basel). 2021 Aug 16;11(8):1484. doi: 10.3390/diagnostics11081484. | Herrmann J | Diagnostics (Basel) | 2021 | 2021/08/27 | PMC8394583 | 10.3390/diagnostics11081484 | |
36372871 | Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN | Li YZ, Wang Y, Fang KB, Zheng HZ, Lai QQ, Xia YF, Chen JY, Dai ZS. | Eur J Med Res. 2022 Nov 14;27(1):247. doi: 10.1186/s40001-022-00883-w. | Li YZ | Eur J Med Res | 2022 | 2022/11/14 | PMC9661774 | 10.1186/s40001-022-00883-w | |
35669917 | Knee Bone and Cartilage Segmentation Based on a 3D Deep Neural Network Using Adversarial Loss for Prior Shape Constraint | Chen H, Zhao N, Tan T, Kang Y, Sun C, Xie G, Verdonschot N, Sprengers A. | Front Med (Lausanne). 2022 May 20;9:792900. doi: 10.3389/fmed.2022.792900. eCollection 2022. | Chen H | Front Med (Lausanne) | 2022 | 2022/06/07 | PMC9163741 | 10.3389/fmed.2022.792900 | |
37122858 | Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative | Yeoh PSQ, Lai KW, Goh SL, Hasikin K, Wu X, Li P. | Front Bioeng Biotechnol. 2023 Apr 13;11:1164655. doi: 10.3389/fbioe.2023.1164655. eCollection 2023. | Yeoh PSQ | Front Bioeng Biotechnol | 2023 | 2023/05/01 | PMC10136763 | 10.3389/fbioe.2023.1164655 | |
32793889 | Deep Learning for Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries from MRI | Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva F, Link TM, Pedoia V, Majumdar S. | Radiol Artif Intell. 2020 Jul 29;2(4):e190207. doi: 10.1148/ryai.2020190207. | Namiri NK | Radiol Artif Intell | 2020 | 2020/08/15 | PMC7392061 | 10.1148/ryai.2020190207 | |
35620201 | Automated Detection Model Based on Deep Learning for Knee Joint Motion Injury due to Martial Arts | Xue M, Liu Y, Cai X. | Comput Math Methods Med. 2022 May 17;2022:3647152. doi: 10.1155/2022/3647152. eCollection 2022. | Xue M | Comput Math Methods Med | 2022 | 2022/05/27 | PMC9129942 | 10.1155/2022/3647152 | |
32168039 | Deep Convolutional Neural Network-Based Diagnosis of Anterior Cruciate Ligament Tears: Performance Comparison of Homogenous Versus Heterogeneous Knee MRI Cohorts With Different Pulse Sequence Protocols and 1.5-T and 3-T Magnetic Field Strengths | Germann C, Marbach G, Civardi F, Fucentese SF, Fritz J, Sutter R, Pfirrmann CWA, Fritz B. | Invest Radiol. 2020 Aug;55(8):499-506. doi: 10.1097/RLI.0000000000000664. | Germann C | Invest Radiol | 2020 | 2020/03/14 | PMC7343178 | 10.1097/RLI.0000000000000664 | |
30063195 | Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection | Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, Lian K, Kambhampati S, Kijowski R. | Radiology. 2018 Oct;289(1):160-169. doi: 10.1148/radiol.2018172986. Epub 2018 Jul 31. | Liu F | Radiology | 2018 | 2018/08/01 | PMC6166867 | NIHMS1001567 | 10.1148/radiol.2018172986 |
31793071 | Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks | Gaj S, Yang M, Nakamura K, Li X. | Magn Reson Med. 2020 Jul;84(1):437-449. doi: 10.1002/mrm.28111. Epub 2019 Dec 2. | Gaj S | Magn Reson Med | 2020 | 2019/12/04 | 10.1002/mrm.28111 | ||
32286452 | Deep Learning Predicts Total Knee Replacement from Magnetic Resonance Images | Tolpadi AA, Lee JJ, Pedoia V, Majumdar S. | Sci Rep. 2020 Apr 14;10(1):6371. doi: 10.1038/s41598-020-63395-9. | Tolpadi AA | Sci Rep | 2020 | 2020/04/15 | PMC7156761 | 10.1038/s41598-020-63395-9 | |
35178233 | A Torn ACL Mapping in Knee MRI Images Using Deep Convolution Neural Network with Inception-v3 | Sridhar S, Amutharaj J, Valsalan P, Arthi B, Ramkumar S, Mathupriya S, Rajendran T, Waji YA. | J Healthc Eng. 2022 Feb 8;2022:7872500. doi: 10.1155/2022/7872500. eCollection 2022. | Sridhar S | J Healthc Eng | 2022 | 2022/02/18 | PMC8846973 | 10.1155/2022/7872500 | |
32593389 | A review on segmentation of knee articular cartilage: from conventional methods towards deep learning | Ebrahimkhani S, Jaward MH, Cicuttini FM, Dharmaratne A, Wang Y, de Herrera AGS. | Artif Intell Med. 2020 Jun;106:101851. doi: 10.1016/j.artmed.2020.101851. Epub 2020 May 6. | Ebrahimkhani S | Artif Intell Med | 2020 | 2020/06/29 | 10.1016/j.artmed.2020.101851 | ||
33350717 | A Deep Learning System for Synthetic Knee Magnetic Resonance Imaging: Is Artificial Intelligence-Based Fat-Suppressed Imaging Feasible? | Fayad LM, Parekh VS, de Castro Luna R, Ko CC, Tank D, Fritz J, Ahlawat S, Jacobs MA. | Invest Radiol. 2021 Jun 1;56(6):357-368. doi: 10.1097/RLI.0000000000000751. | Fayad LM | Invest Radiol | 2021 | 2020/12/22 | PMC8087629 | NIHMS1644518 | 10.1097/RLI.0000000000000751 |
36016997 | Automated detection of knee cystic lesions on magnetic resonance imaging using deep learning | Xiongfeng T, Yingzhi L, Xianyue S, Meng H, Bo C, Deming G, Yanguo Q. | Front Med (Lausanne). 2022 Aug 9;9:928642. doi: 10.3389/fmed.2022.928642. eCollection 2022. | Xiongfeng T | Front Med (Lausanne) | 2022 | 2022/08/26 | PMC9397605 | 10.3389/fmed.2022.928642 | |
33724507 | Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications | Cole E, Cheng J, Pauly J, Vasanawala S. | Magn Reson Med. 2021 Aug;86(2):1093-1109. doi: 10.1002/mrm.28733. Epub 2021 Mar 16. | Cole E | Magn Reson Med | 2021 | 2021/03/16 | PMC8291740 | NIHMS1669248 | 10.1002/mrm.28733 |
35502381 | Automated knee cartilage segmentation for heterogeneous clinical MRI using generative adversarial networks with transfer learning | Yang M, Colak C, Chundru KK, Gaj S, Nanavati A, Jones MH, Winalski CS, Subhas N, Li X. | Quant Imaging Med Surg. 2022 May;12(5):2620-2633. doi: 10.21037/qims-21-459. | Yang M | Quant Imaging Med Surg | 2022 | 2022/05/03 | PMC9014147 | 10.21037/qims-21-459 | |
35847603 | Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model | Li J, Qian K, Liu J, Huang Z, Zhang Y, Zhao G, Wang H, Li M, Liang X, Zhou F, Yu X, Li L, Wang X, Yang X, Jiang Q. | J Orthop Translat. 2022 Jun 26;34:91-101. doi: 10.1016/j.jot.2022.05.006. eCollection 2022 May. | Li J | J Orthop Translat | 2022 | 2022/07/18 | PMC9253363 | 10.1016/j.jot.2022.05.006 | |
31872357 | Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain | Kemnitz J, Baumgartner CF, Eckstein F, Chaudhari A, Ruhdorfer A, Wirth W, Eder SK, Konukoglu E. | MAGMA. 2020 Aug;33(4):483-493. doi: 10.1007/s10334-019-00816-5. Epub 2019 Dec 23. | Kemnitz J | MAGMA | 2020 | 2019/12/25 | PMC7351818 | 10.1007/s10334-019-00816-5 | |
35811127 | Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study | Akai H, Yasaka K, Sugawara H, Tajima T, Akahane M, Yoshioka N, Ohtomo K, Abe O, Kiryu S. | Magn Reson Med Sci. 2023 Jul 1;22(3):353-360. doi: 10.2463/mrms.mp.2022-0020. Epub 2022 Jul 9. | Akai H | Magn Reson Med Sci | 2023 | 2022/07/10 | PMC10449552 | 10.2463/mrms.mp.2022-0020 | |
36527935 | A Joint Group Sparsity-based deep learning for multi-contrast MRI reconstruction | Guo D, Zeng G, Fu H, Wang Z, Yang Y, Qu X. | J Magn Reson. 2023 Jan;346:107354. doi: 10.1016/j.jmr.2022.107354. Epub 2022 Dec 8. | Guo D | J Magn Reson | 2023 | 2022/12/17 | 10.1016/j.jmr.2022.107354 | ||
37547408 | MGACA-Net: a novel deep learning based multi-scale guided attention and context aggregation for localization of knee anterior cruciate ligament tears region in MRI images | Awan MJ, Mohd Rahim MS, Salim N, Nobanee H, Asif AA, Attiq MO. | PeerJ Comput Sci. 2023 Jul 13;9:e1483. doi: 10.7717/peerj-cs.1483. eCollection 2023. | Awan MJ | PeerJ Comput Sci | 2023 | 2023/08/07 | PMC10403161 | 10.7717/peerj-cs.1483 | |
35759870 | Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency | Huo J, Ouyang X, Si L, Xuan K, Wang S, Yao W, Liu Y, Xu J, Qian D, Xue Z, Wang Q, Shen D, Zhang L. | Med Image Anal. 2022 Aug;80:102508. doi: 10.1016/j.media.2022.102508. Epub 2022 Jun 18. | Huo J | Med Image Anal | 2022 | 2022/06/27 | 10.1016/j.media.2022.102508 | ||
34926416 | A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database | Tack A, Shestakov A, Lüdke D, Zachow S. | Front Bioeng Biotechnol. 2021 Dec 2;9:747217. doi: 10.3389/fbioe.2021.747217. eCollection 2021. | Tack A | Front Bioeng Biotechnol | 2021 | 2021/12/20 | PMC8675251 | 10.3389/fbioe.2021.747217 | |
35678739 | Simultaneously optimizing sampling pattern for joint acceleration of multi-contrast MRI using model-based deep learning | Seo S, Luu HM, Choi SH, Park SH. | Med Phys. 2022 Sep;49(9):5964-5980. doi: 10.1002/mp.15790. Epub 2022 Jun 20. | Seo S | Med Phys | 2022 | 2022/06/09 | 10.1002/mp.15790 | ||
24579147 | Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network | Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. | Med Image Comput Comput Assist Interv. 2013;16(Pt 2):246-53. doi: 10.1007/978-3-642-40763-5_31. | Prasoon A | Med Image Comput Comput Assist Interv | 2013 | 2014/03/01 | 10.1007/978-3-642-40763-5_31 | ||
28670152 | Deep Learning in Medical Imaging: General Overview | Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N. | Korean J Radiol. 2017 Jul-Aug;18(4):570-584. doi: 10.3348/kjr.2017.18.4.570. Epub 2017 May 19. | Lee JG | Korean J Radiol | 2017 | 2017/07/04 | PMC5447633 | 10.3348/kjr.2017.18.4.570 | |
31958580 | Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks | Burton W 2nd, Myers C, Rullkoetter P. | Comput Methods Programs Biomed. 2020 Jun;189:105328. doi: 10.1016/j.cmpb.2020.105328. Epub 2020 Jan 11. | Burton W 2nd | Comput Methods Programs Biomed | 2020 | 2020/01/21 | 10.1016/j.cmpb.2020.105328 | ||
33440798 | Efficient Detection of Knee Anterior Cruciate Ligament from Magnetic Resonance Imaging Using Deep Learning Approach | Awan MJ, Rahim MSM, Salim N, Mohammed MA, Garcia-Zapirain B, Abdulkareem KH. | Diagnostics (Basel). 2021 Jan 11;11(1):105. doi: 10.3390/diagnostics11010105. | Awan MJ | Diagnostics (Basel) | 2021 | 2021/01/14 | PMC7826961 | 10.3390/diagnostics11010105 | |
31582263 | Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning | Qiu D, Zhang S, Liu Y, Zhu J, Zheng L. | Comput Methods Programs Biomed. 2020 Apr;187:105059. doi: 10.1016/j.cmpb.2019.105059. Epub 2019 Sep 24. | Qiu D | Comput Methods Programs Biomed | 2020 | 2019/10/05 | 10.1016/j.cmpb.2019.105059 | ||
30273968 | Translation of morphological and functional musculoskeletal imaging | Pedoia V, Majumdar S. | J Orthop Res. 2019 Jan;37(1):23-34. doi: 10.1002/jor.24151. Epub 2018 Oct 29. | Pedoia V | J Orthop Res | 2019 | 2018/10/02 | 10.1002/jor.24151 | ||
34735607 | AI MSK clinical applications: cartilage and osteoarthritis | Joseph GB, McCulloch CE, Sohn JH, Pedoia V, Majumdar S, Link TM. | Skeletal Radiol. 2022 Feb;51(2):331-343. doi: 10.1007/s00256-021-03909-2. Epub 2021 Nov 4. | Joseph GB | Skeletal Radiol | 2022 | 2021/11/04 | 10.1007/s00256-021-03909-2 | ||
32992372 | Improving Quantitative Magnetic Resonance Imaging Using Deep Learning | Liu F. | Semin Musculoskelet Radiol. 2020 Aug;24(4):451-459. doi: 10.1055/s-0040-1709482. Epub 2020 Sep 29. | Liu F | Semin Musculoskelet Radiol | 2020 | 2020/09/29 | PMC8164439 | NIHMS1700390 | 10.1055/s-0040-1709482 |
31535731 | Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning | Byra M, Wu M, Zhang X, Jang H, Ma YJ, Chang EY, Shah S, Du J. | Magn Reson Med. 2020 Mar;83(3):1109-1122. doi: 10.1002/mrm.27969. Epub 2019 Sep 19. | Byra M | Magn Reson Med | 2020 | 2019/09/20 | PMC6879791 | NIHMS1045869 | 10.1002/mrm.27969 |
31621571 | Magnetic resonance imaging assessment of knee osteoarthritis: current and developing new concepts and techniques | Hayashi D, Roemer FW, Guermazi A. | Clin Exp Rheumatol. 2019 Sep-Oct;37 Suppl 120(5):88-95. Epub 2019 Oct 15. | Hayashi D | Clin Exp Rheumatol | 2019 | 2019/10/18 | |||
36564430 | Region of interest-specific loss functions improve T(2) quantification with ultrafast T(2) mapping MRI sequences in knee, hip and lumbar spine | Tolpadi AA, Han M, Calivà F, Pedoia V, Majumdar S. | Sci Rep. 2022 Dec 23;12(1):22208. doi: 10.1038/s41598-022-26266-z. | Tolpadi AA | Sci Rep | 2022 | 2022/12/23 | PMC9789075 | 10.1038/s41598-022-26266-z | |
32076658 | Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning | Liu F, Guan B, Zhou Z, Samsonov A, Rosas H, Lian K, Sharma R, Kanarek A, Kim J, Guermazi A, Kijowski R. | Radiol Artif Intell. 2019 May 8;1(3):180091. doi: 10.1148/ryai.2019180091. | Liu F | Radiol Artif Intell | 2019 | 2020/02/21 | PMC6542618 | 10.1148/ryai.2019180091 | |
35524293 | Automatic segmentation model of intercondylar fossa based on deep learning: a novel and effective assessment method for the notch volume | Li M, Bai H, Zhang F, Zhou Y, Lin Q, Zhou Q, Feng Q, Zhang L. | BMC Musculoskelet Disord. 2022 May 6;23(1):426. doi: 10.1186/s12891-022-05378-7. | Li M | BMC Musculoskelet Disord | 2022 | 2022/05/07 | PMC9074347 | 10.1186/s12891-022-05378-7 | |
33634142 | Knee Cartilage Thickness Differs Alongside Ages: A 3-T Magnetic Resonance Research Upon 2,481 Subjects via Deep Learning | Si L, Xuan K, Zhong J, Huo J, Xing Y, Geng J, Hu Y, Zhang H, Wang Q, Yao W. | Front Med (Lausanne). 2021 Feb 9;7:600049. doi: 10.3389/fmed.2020.600049. eCollection 2020. | Si L | Front Med (Lausanne) | 2021 | 2021/02/26 | PMC7900571 | 10.3389/fmed.2020.600049 | |
36793660 | Prediction Models for Knee Osteoarthritis: Review of Current Models and Future Directions | Ramazanian T, Fu S, Sohn S, Taunton MJ, Kremers HM. | Arch Bone Jt Surg. 2023;11(1):1-11. doi: 10.22038/ABJS.2022.58485.2897. | Ramazanian T | Arch Bone Jt Surg | 2023 | 2023/02/16 | PMC9903309 | 10.22038/ABJS.2022.58485.2897 | |
36243308 | The KNee OsteoArthritis Prediction (KNOAP2020) challenge: An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images | Hirvasniemi J, Runhaar J, van der Heijden RA, Zokaeinikoo M, Yang M, Li X, Tan J, Rajamohan HR, Zhou Y, Deniz CM, Caliva F, Iriondo C, Lee JJ, Liu F, Martinez AM, Namiri N, Pedoia V, Panfilov E, Bayramoglu N, Nguyen HH, Nieminen MT, Saarakkala S, Tiulpin A, Lin E, Li A, Li V, Dam EB, Chaudhari AS, Kijowski R, Bierma-Zeinstra S, Oei EHG, Klein S. | Osteoarthritis Cartilage. 2023 Jan;31(1):115-125. doi: 10.1016/j.joca.2022.10.001. Epub 2022 Oct 12. | Hirvasniemi J | Osteoarthritis Cartilage | 2023 | 2022/10/15 | PMC10323696 | NIHMS1905689 | 10.1016/j.joca.2022.10.001 |
34087612 | A deep cascade of ensemble of dual domain networks with gradient-based T1 assistance and perceptual refinement for fast MRI reconstruction | Murugesan B, Ramanarayanan S, Vijayarangan S, Ram K, Jagannathan NR, Sivaprakasam M. | Comput Med Imaging Graph. 2021 Jul;91:101942. doi: 10.1016/j.compmedimag.2021.101942. Epub 2021 May 24. | Murugesan B | Comput Med Imaging Graph | 2021 | 2021/06/04 | 10.1016/j.compmedimag.2021.101942 | ||
36204533 | RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning | Mei X, Liu Z, Robson PM, Marinelli B, Huang M, Doshi A, Jacobi A, Cao C, Link KE, Yang T, Wang Y, Greenspan H, Deyer T, Fayad ZA, Yang Y. | Radiol Artif Intell. 2022 Jul 27;4(5):e210315. doi: 10.1148/ryai.210315. eCollection 2022 Sep. | Mei X | Radiol Artif Intell | 2022 | 2022/10/07 | PMC9530758 | 10.1148/ryai.210315 | |
34938819 | Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis of Intra- and Extra-articular Hip Impingement | Zeng G, Degonda C, Boschung A, Schmaranzer F, Gerber N, Siebenrock KA, Steppacher SD, Tannast M, Lerch TD. | Orthop J Sports Med. 2021 Nov 24;9(12):23259671211046916. doi: 10.1177/23259671211046916. eCollection 2021 Dec. | Zeng G | Orthop J Sports Med | 2021 | 2021/12/23 | PMC8685729 | 10.1177/23259671211046916 | |
32162395 | Fully automated and robust analysis technique for popliteal artery vessel wall evaluation (FRAPPE) using neural network models from standardized knee MRI | Chen L, Canton G, Liu W, Hippe DS, Balu N, Watase H, Hatsukami TS, Waterton JC, Hwang JN, Yuan C. | Magn Reson Med. 2020 Oct;84(4):2147-2160. doi: 10.1002/mrm.28237. Epub 2020 Mar 11. | Chen L | Magn Reson Med | 2020 | 2020/03/13 | PMC8320767 | NIHMS1570342 | 10.1002/mrm.28237 |
32956045 | Uncertainty Quantification in Deep MRI Reconstruction | Edupuganti V, Mardani M, Vasanawala S, Pauly J. | IEEE Trans Med Imaging. 2021 Jan;40(1):239-250. doi: 10.1109/TMI.2020.3025065. Epub 2020 Dec 29. | Edupuganti V | IEEE Trans Med Imaging | 2021 | 2020/09/21 | PMC7837266 | NIHMS1658436 | 10.1109/TMI.2020.3025065 |
34918423 | Cross-Cohort Automatic Knee MRI Segmentation With Multi-Planar U-Nets | Perslev M, Pai A, Runhaar J, Igel C, Dam EB. | J Magn Reson Imaging. 2022 Jun;55(6):1650-1663. doi: 10.1002/jmri.27978. Epub 2021 Dec 17. | Perslev M | J Magn Reson Imaging | 2022 | 2021/12/17 | PMC9106804 | NIHMS1750740 | 10.1002/jmri.27978 |
36126403 | KCB-Net: A 3D knee cartilage and bone segmentation network via sparse annotation | Peng Y, Zheng H, Liang P, Zhang L, Zaman F, Wu X, Sonka M, Chen DZ. | Med Image Anal. 2022 Nov;82:102574. doi: 10.1016/j.media.2022.102574. Epub 2022 Sep 7. | Peng Y | Med Image Anal | 2022 | 2022/09/20 | 10.1016/j.media.2022.102574 | ||
30905742 | Diagnosing osteoarthritis from T(2) maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort | Pedoia V, Lee J, Norman B, Link TM, Majumdar S. | Osteoarthritis Cartilage. 2019 Jul;27(7):1002-1010. doi: 10.1016/j.joca.2019.02.800. Epub 2019 Mar 21. | Pedoia V | Osteoarthritis Cartilage | 2019 | 2019/03/26 | PMC6579664 | NIHMS1525123 | 10.1016/j.joca.2019.02.800 |
35059693 | Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization | Arvinte M, Vishwanath S, Tewfik AH, Tamir JI. | Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12906:350-360. doi: 10.1007/978-3-030-87231-1_34. Epub 2021 Sep 21. | Arvinte M | Med Image Comput Comput Assist Interv | 2021 | 2022/01/21 | PMC8767765 | NIHMS1765492 | 10.1007/978-3-030-87231-1_34 |
34062366 | Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction | Lv J, Li G, Tong X, Chen W, Huang J, Wang C, Yang G. | Comput Biol Med. 2021 Jul;134:104504. doi: 10.1016/j.compbiomed.2021.104504. Epub 2021 May 26. | Lv J | Comput Biol Med | 2021 | 2021/06/01 | 10.1016/j.compbiomed.2021.104504 | ||
32759045 | pFISTA-SENSE-ResNet for parallel MRI reconstruction | Lu T, Zhang X, Huang Y, Guo D, Huang F, Xu Q, Hu Y, Ou-Yang L, Lin J, Yan Z, Qu X. | J Magn Reson. 2020 Sep;318:106790. doi: 10.1016/j.jmr.2020.106790. Epub 2020 Jul 21. | Lu T | J Magn Reson | 2020 | 2020/08/08 | 10.1016/j.jmr.2020.106790 | ||
30859341 | Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear | Chang PD, Wong TT, Rasiej MJ. | J Digit Imaging. 2019 Dec;32(6):980-986. doi: 10.1007/s10278-019-00193-4. | Chang PD | J Digit Imaging | 2019 | 2019/03/13 | PMC6841825 | 10.1007/s10278-019-00193-4 | |
34306588 | Deep Learning-Based Magnetic Resonance Imaging Image Features for Diagnosis of Anterior Cruciate Ligament Injury | Li Z, Ren S, Zhou R, Jiang X, You T, Li C, Zhang W. | J Healthc Eng. 2021 Jul 2;2021:4076175. doi: 10.1155/2021/4076175. eCollection 2021. | Li Z | J Healthc Eng | 2021 | 2021/07/26 | PMC8272672 | 10.1155/2021/4076175 | |
36092783 | Detection Method of Athlete Joint Injury Based on Deep Learning Model | Liu J, Yang X, Liao T, Huang Y. | Comput Math Methods Med. 2022 Sep 2;2022:8165580. doi: 10.1155/2022/8165580. eCollection 2022. | Liu J | Comput Math Methods Med | 2022 | 2022/09/12 | PMC9462975 | 10.1155/2022/8165580 | |
34151253 | Evaluation of MRI Denoising Methods Using Unsupervised Learning | Moreno López M, Frederick JM, Ventura J. | Front Artif Intell. 2021 Jun 4;4:642731. doi: 10.3389/frai.2021.642731. eCollection 2021. | Moreno López M | Front Artif Intell | 2021 | 2021/06/21 | PMC8212039 | 10.3389/frai.2021.642731 | |
34892119 | MRI Knee Domain Translation for Unsupervised Segmentation By CycleGAN (data from Osteoarthritis initiative (OAI)) | Felfeliyan B, Hareendranathan A, Kuntze G, Jaremko J, Ronsky J. | Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4052-4055. doi: 10.1109/EMBC46164.2021.9629705. | Felfeliyan B | Annu Int Conf IEEE Eng Med Biol Soc | 2021 | 2021/12/11 | 10.1109/EMBC46164.2021.9629705 | ||
35192462 | Pyramid Convolutional RNN for MRI Image Reconstruction | Chen EZ, Wang P, Chen X, Chen T, Sun S. | IEEE Trans Med Imaging. 2022 Aug;41(8):2033-2047. doi: 10.1109/TMI.2022.3153849. Epub 2022 Aug 1. | Chen EZ | IEEE Trans Med Imaging | 2022 | 2022/02/22 | 10.1109/TMI.2022.3153849 | ||
35383186 | fastMRI+, Clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data | Zhao R, Yaman B, Zhang Y, Stewart R, Dixon A, Knoll F, Huang Z, Lui YW, Hansen MS, Lungren MP. | Sci Data. 2022 Apr 5;9(1):152. doi: 10.1038/s41597-022-01255-z. | Zhao R | Sci Data | 2022 | 2022/04/06 | PMC8983757 | 10.1038/s41597-022-01255-z | |
29115689 | Learning a variational network for reconstruction of accelerated MRI data | Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F. | Magn Reson Med. 2018 Jun;79(6):3055-3071. doi: 10.1002/mrm.26977. Epub 2017 Nov 8. | Hammernik K | Magn Reson Med | 2018 | 2017/11/09 | PMC5902683 | NIHMS928633 | 10.1002/mrm.26977 |
36716684 | DSMENet: Detail and Structure Mutually Enhancing Network for under-sampled MRI reconstruction | Wang Y, Pang Y, Tong C. | Comput Biol Med. 2023 Mar;154:106204. doi: 10.1016/j.compbiomed.2022.106204. Epub 2022 Oct 13. | Wang Y | Comput Biol Med | 2023 | 2023/01/30 | 10.1016/j.compbiomed.2022.106204 | ||
35713187 | Deep learning-based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data | Hanspach J, Bollmann S, Grigo J, Karius A, Uder M, Laun FB. | Magn Reson Med. 2022 Oct;88(4):1548-1560. doi: 10.1002/mrm.29265. Epub 2022 Jun 17. | Hanspach J | Magn Reson Med | 2022 | 2022/06/17 | 10.1002/mrm.29265 | ||
33231896 | Robust water-fat separation based on deep learning model exploring multi-echo nature of mGRE | Liu K, Li X, Li Z, Chen Y, Xiong H, Chen F, Bao Q, Liu C. | Magn Reson Med. 2021 May;85(5):2828-2841. doi: 10.1002/mrm.28586. Epub 2020 Nov 24. | Liu K | Magn Reson Med | 2021 | 2020/11/24 | 10.1002/mrm.28586 | ||
36651242 | [Deep parallel MRI reconstruction based on a complex-valued loss function] | Huang J, Zhou G, Yu Z, Hu W. | Nan Fang Yi Ke Da Xue Xue Bao. 2022 Dec 20;42(12):1755-1764. doi: 10.12122/j.issn.1673-4254.2022.12.02. | Huang J | Nan Fang Yi Ke Da Xue Xue Bao | 2022 | 2023/01/18 | PMC9878414 | 10.12122/j.issn.1673-4254.2022.12.02 | |
31732262 | MR Protocol Optimization With Deep Learning: A Proof of Concept | Richardson ML. | Curr Probl Diagn Radiol. 2021 Mar-Apr;50(2):168-174. doi: 10.1067/j.cpradiol.2019.10.004. Epub 2019 Oct 21. | Richardson ML | Curr Probl Diagn Radiol | 2021 | 2019/11/17 | 10.1067/j.cpradiol.2019.10.004 | ||
30529224 | Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative | Ambellan F, Tack A, Ehlke M, Zachow S. | Med Image Anal. 2019 Feb;52:109-118. doi: 10.1016/j.media.2018.11.009. Epub 2018 Nov 17. | Ambellan F | Med Image Anal | 2019 | 2018/12/12 | 10.1016/j.media.2018.11.009 | ||
32879854 | Diagnostic interchangeability of deep convolutional neural networks reconstructed knee MR images: preliminary experience | Subhas N, Li H, Yang M, Winalski CS, Polster J, Obuchowski N, Mamoto K, Liu R, Zhang C, Huang P, Gaire SK, Liang D, Shen B, Li X, Ying L. | Quant Imaging Med Surg. 2020 Sep;10(9):1748-1762. doi: 10.21037/qims-20-664. | Subhas N | Quant Imaging Med Surg | 2020 | 2020/09/04 | PMC7417759 | 10.21037/qims-20-664 | |
36474467 | Fast quantitative bone marrow lesion measurement on knee MRI for the assessment of osteoarthritis | Preiswerk F, Sury MS, Wortman JR, Neumann G, Wells W, Duryea J. | Osteoarthr Cartil Open. 2022 Jan 10;4(1):100234. doi: 10.1016/j.ocarto.2022.100234. eCollection 2022 Mar. | Preiswerk F | Osteoarthr Cartil Open | 2022 | 2022/12/07 | PMC9718203 | 10.1016/j.ocarto.2022.100234 | |
35652115 | MIMIR: Deep Regression for Automated Analysis of UK Biobank MRI Scans | Langner T, Martínez Mora A, Strand R, Ahlström H, Kullberg J. | Radiol Artif Intell. 2022 Apr 6;4(3):e210178. doi: 10.1148/ryai.210178. eCollection 2022 May. | Langner T | Radiol Artif Intell | 2022 | 2022/06/02 | PMC9152682 | 10.1148/ryai.210178 | |
31373061 | MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks | Zhang Q, Ruan G, Yang W, Liu Y, Zhao K, Feng Q, Chen W, Wu EX, Feng Y. | Magn Reson Med. 2019 Dec;82(6):2133-2145. doi: 10.1002/mrm.27894. Epub 2019 Aug 2. | Zhang Q | Magn Reson Med | 2019 | 2019/08/03 | 10.1002/mrm.27894 | ||
29774597 | Assessment of the generalization of learned image reconstruction and the potential for transfer learning | Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. | Magn Reson Med. 2019 Jan;81(1):116-128. doi: 10.1002/mrm.27355. Epub 2018 May 17. | Knoll F | Magn Reson Med | 2019 | 2018/05/19 | PMC6240410 | NIHMS962219 | 10.1002/mrm.27355 |
28733975 | Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging | Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. | Magn Reson Med. 2018 Apr;79(4):2379-2391. doi: 10.1002/mrm.26841. Epub 2017 Jul 21. | Liu F | Magn Reson Med | 2018 | 2017/07/23 | PMC6271435 | NIHMS996920 | 10.1002/mrm.26841 |
32055951 | Assessment of knee pain from MR imaging using a convolutional Siamese network | Chang GH, Felson DT, Qiu S, Guermazi A, Capellini TD, Kolachalama VB. | Eur Radiol. 2020 Jun;30(6):3538-3548. doi: 10.1007/s00330-020-06658-3. Epub 2020 Feb 13. | Chang GH | Eur Radiol | 2020 | 2020/02/15 | PMC7786238 | NIHMS1561607 | 10.1007/s00330-020-06658-3 |
35214451 | Automated Knee MR Images Segmentation of Anterior Cruciate Ligament Tears | Awan MJ, Rahim MSM, Salim N, Rehman A, Garcia-Zapirain B. | Sensors (Basel). 2022 Feb 17;22(4):1552. doi: 10.3390/s22041552. | Awan MJ | Sensors (Basel) | 2022 | 2022/02/26 | PMC8876207 | 10.3390/s22041552 | |
36446308 | Deep convolutional feature details for better knee disorder diagnoses in magnetic resonance images | Dunnhofer M, Martinel N, Micheloni C. | Comput Med Imaging Graph. 2022 Dec;102:102142. doi: 10.1016/j.compmedimag.2022.102142. Epub 2022 Nov 21. | Dunnhofer M | Comput Med Imaging Graph | 2022 | 2022/11/29 | 10.1016/j.compmedimag.2022.102142 | ||
36049450 | CAN3D: Fast 3D medical image segmentation via compact context aggregation | Dai W, Woo B, Liu S, Marques M, Engstrom C, Greer PB, Crozier S, Dowling JA, Chandra SS. | Med Image Anal. 2022 Nov;82:102562. doi: 10.1016/j.media.2022.102562. Epub 2022 Aug 9. | Dai W | Med Image Anal | 2022 | 2022/09/01 | 10.1016/j.media.2022.102562 | ||
32980503 | High-performance rapid MR parameter mapping using model-based deep adversarial learning | Liu F, Kijowski R, Feng L, El Fakhri G. | Magn Reson Imaging. 2020 Dec;74:152-160. doi: 10.1016/j.mri.2020.09.021. Epub 2020 Sep 25. | Liu F | Magn Reson Imaging | 2020 | 2020/09/27 | PMC7669737 | NIHMS1634937 | 10.1016/j.mri.2020.09.021 |
34611904 | Partial Fourier reconstruction of complex MR images using complex-valued convolutional neural networks | Xiao L, Liu Y, Yi Z, Zhao Y, Xie L, Cao P, Leong ATL, Wu EX. | Magn Reson Med. 2022 Feb;87(2):999-1014. doi: 10.1002/mrm.29033. Epub 2021 Oct 5. | Xiao L | Magn Reson Med | 2022 | 2021/10/06 | 10.1002/mrm.29033 | ||
30188817 | Learning Cross-Modality Representations From Multi-Modal Images | van Tulder G, de Bruijne M. | IEEE Trans Med Imaging. 2019 Feb;38(2):638-648. doi: 10.1109/TMI.2018.2868977. Epub 2018 Sep 6. | van Tulder G | IEEE Trans Med Imaging | 2019 | 2018/09/07 | 10.1109/TMI.2018.2868977 | ||
35789133 | Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging | Yaman B, Gu H, Hosseini SAH, Demirel OB, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. | NMR Biomed. 2022 Dec;35(12):e4798. doi: 10.1002/nbm.4798. Epub 2022 Jul 17. | Yaman B | NMR Biomed | 2022 | 2022/07/05 | PMC9669191 | NIHMS1821616 | 10.1002/nbm.4798 |
32038862 | Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty | Rodrigues P, Antunes M, Raposo C, Marques P, Fonseca F, Barreto JP. | Healthc Technol Lett. 2019 Dec 6;6(6):226-230. doi: 10.1049/htl.2019.0078. eCollection 2019 Dec. | Rodrigues P | Healthc Technol Lett | 2019 | 2020/02/11 | PMC6952257 | 10.1049/htl.2019.0078 | |
35426470 | Improving high frequency image features of deep learning reconstructions via k-space refinement with null-space kernel | Ryu K, Alkan C, Vasanawala SS. | Magn Reson Med. 2022 Sep;88(3):1263-1272. doi: 10.1002/mrm.29261. Epub 2022 Apr 15. | Ryu K | Magn Reson Med | 2022 | 2022/04/15 | PMC9246879 | NIHMS1791972 | 10.1002/mrm.29261 |
35172227 | Surface spherical encoding and contrastive learning for virtual bone shape aging | Calivá F, Kamat S, Morales Martinez A, Majumdar S, Pedoia V. | Med Image Anal. 2022 Apr;77:102388. doi: 10.1016/j.media.2022.102388. Epub 2022 Feb 7. | Calivá F | Med Image Anal | 2022 | 2022/02/16 | 10.1016/j.media.2022.102388 | ||
30703579 | Recurrent inference machines for reconstructing heterogeneous MRI data | Lønning K, Putzky P, Sonke JJ, Reneman L, Caan MWA, Welling M. | Med Image Anal. 2019 Apr;53:64-78. doi: 10.1016/j.media.2019.01.005. Epub 2019 Jan 18. | Lønning K | Med Image Anal | 2019 | 2019/02/01 | 10.1016/j.media.2019.01.005 | ||
34441318 | TransMed: Transformers Advance Multi-Modal Medical Image Classification | Dai Y, Gao Y, Liu F. | Diagnostics (Basel). 2021 Jul 31;11(8):1384. doi: 10.3390/diagnostics11081384. | Dai Y | Diagnostics (Basel) | 2021 | 2021/08/27 | PMC8391808 | 10.3390/diagnostics11081384 | |
32243657 | Learning osteoarthritis imaging biomarkers from bone surface spherical encoding | Morales Martinez A, Caliva F, Flament I, Liu F, Lee J, Cao P, Shah R, Majumdar S, Pedoia V. | Magn Reson Med. 2020 Oct;84(4):2190-2203. doi: 10.1002/mrm.28251. Epub 2020 Apr 3. | Morales Martinez A | Magn Reson Med | 2020 | 2020/04/04 | PMC7329596 | NIHMS1582357 | 10.1002/mrm.28251 |
37426615 | Medical imaging in rheumatoid arthritis: A review on deep learning approach | Parashar A, Rishi R, Parashar A, Rida I. | Open Life Sci. 2023 Jul 6;18(1):20220611. doi: 10.1515/biol-2022-0611. eCollection 2023. | Parashar A | Open Life Sci | 2023 | 2023/07/10 | PMC10329279 | 10.1515/biol-2022-0611 | |
34101071 | Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative | Gatti AA, Maly MR. | MAGMA. 2021 Dec;34(6):859-875. doi: 10.1007/s10334-021-00934-z. Epub 2021 Jun 8. | Gatti AA | MAGMA | 2021 | 2021/06/08 | 10.1007/s10334-021-00934-z | ||
32715584 | Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard | Zhang L, Li M, Zhou Y, Lu G, Zhou Q. | J Magn Reson Imaging. 2020 Dec;52(6):1745-1752. doi: 10.1002/jmri.27266. Epub 2020 Jul 26. | Zhang L | J Magn Reson Imaging | 2020 | 2020/07/28 | 10.1002/jmri.27266 | ||
35107593 | Automated segmentation of magnetic resonance bone marrow signal: a feasibility study | von Brandis E, Jenssen HB, Avenarius DFM, Bjørnerud A, Flatø B, Tomterstad AH, Lilleby V, Rosendahl K, Sakinis T, Zadig PKK, Müller LO. | Pediatr Radiol. 2022 May;52(6):1104-1114. doi: 10.1007/s00247-021-05270-x. Epub 2022 Feb 2. | von Brandis E | Pediatr Radiol | 2022 | 2022/02/02 | PMC9107442 | 10.1007/s00247-021-05270-x | |
36292003 | Anterior Cruciate Ligament Tear Detection Based on Deep Convolutional Neural Network | Joshi K, Suganthi K. | Diagnostics (Basel). 2022 Sep 26;12(10):2314. doi: 10.3390/diagnostics12102314. | Joshi K | Diagnostics (Basel) | 2022 | 2022/10/27 | PMC9600338 | 10.3390/diagnostics12102314 | |
30040634 | Deep Generative Adversarial Neural Networks for Compressive Sensing MRI | Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, Pauly JM. | IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23. | Mardani M | IEEE Trans Med Imaging | 2019 | 2018/07/25 | PMC6542360 | NIHMS1517794 | 10.1109/TMI.2018.2858752 |
23887984 | Difficulty with learning of exercise instructions associated with 'working memory' dysfunction and frontal glucose hypometabolism in a patient with very mild subcortical vascular dementia with knee osteoarthritis | Takeda K, Meguro K, Tanaka N, Nakatsuka M. | BMJ Case Rep. 2013 Jul 25;2013:bcr2013008577. doi: 10.1136/bcr-2013-008577. | Takeda K | BMJ Case Rep | 2013 | 2013/07/27 | PMC3736114 | 10.1136/bcr-2013-008577 | |
35637451 | Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image | Shin H, Choi GS, Shon OJ, Kim GB, Chang MC. | BMC Musculoskelet Disord. 2022 May 30;23(1):510. doi: 10.1186/s12891-022-05468-6. | Shin H | BMC Musculoskelet Disord | 2022 | 2022/05/31 | PMC9150332 | 10.1186/s12891-022-05468-6 | |
34110037 | Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination | Hammernik K, Schlemper J, Qin C, Duan J, Summers RM, Rueckert D. | Magn Reson Med. 2021 Oct;86(4):1859-1872. doi: 10.1002/mrm.28827. Epub 2021 Jun 10. | Hammernik K | Magn Reson Med | 2021 | 2021/06/10 | 10.1002/mrm.28827 | ||
35648374 | Automatic Detection of Meniscus Tears Using Backbone Convolutional Neural Networks on Knee MRI | Hung TNK, Vy VPT, Tri NM, Hoang LN, Tuan LV, Ho QT, Le NQK, Kang JH. | J Magn Reson Imaging. 2023 Mar;57(3):740-749. doi: 10.1002/jmri.28284. Epub 2022 Jun 1. | Hung TNK | J Magn Reson Imaging | 2023 | 2022/06/01 | 10.1002/jmri.28284 | ||
32614100 | Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data | Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. | Magn Reson Med. 2020 Dec;84(6):3172-3191. doi: 10.1002/mrm.28378. Epub 2020 Jul 2. | Yaman B | Magn Reson Med | 2020 | 2020/07/03 | PMC7811359 | NIHMS1661354 | 10.1002/mrm.28378 |
36067702 | A cascade of preconditioned conjugate gradient networks for accelerated magnetic resonance imaging | Kim M, Chung W. | Comput Methods Programs Biomed. 2022 Oct;225:107090. doi: 10.1016/j.cmpb.2022.107090. Epub 2022 Aug 29. | Kim M | Comput Methods Programs Biomed | 2022 | 2022/09/06 | 10.1016/j.cmpb.2022.107090 | ||
31166049 | SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction | Liu F, Samsonov A, Chen L, Kijowski R, Feng L. | Magn Reson Med. 2019 Nov;82(5):1890-1904. doi: 10.1002/mrm.27827. Epub 2019 Jun 5. | Liu F | Magn Reson Med | 2019 | 2019/06/06 | PMC6660404 | NIHMS1028480 | 10.1002/mrm.27827 |
32755384 | Diagnostic Accuracy of Quantitative Multicontrast 5-Minute Knee MRI Using Prospective Artificial Intelligence Image Quality Enhancement | Chaudhari AS, Grissom MJ, Fang Z, Sveinsson B, Lee JH, Gold GE, Hargreaves BA, Stevens KJ. | AJR Am J Roentgenol. 2021 Jun;216(6):1614-1625. doi: 10.2214/AJR.20.24172. Epub 2020 Aug 5. | Chaudhari AS | AJR Am J Roentgenol | 2021 | 2020/08/07 | PMC8862596 | NIHMS1773740 | 10.2214/AJR.20.24172 |
35041598 | NC-PDNet: A Density-Compensated Unrolled Network for 2D and 3D Non-Cartesian MRI Reconstruction | Ramzi Z, G R C, Starck JL, Ciuciu P. | IEEE Trans Med Imaging. 2022 Jul;41(7):1625-1638. doi: 10.1109/TMI.2022.3144619. Epub 2022 Jun 30. | Ramzi Z | IEEE Trans Med Imaging | 2022 | 2022/01/18 | 10.1109/TMI.2022.3144619 | ||
35551485 | Design and validation of a semi-automatic bone segmentation algorithm from MRI to improve research efficiency | Heckelman LN, Soher BJ, Spritzer CE, Lewis BD, DeFrate LE. | Sci Rep. 2022 May 12;12(1):7825. doi: 10.1038/s41598-022-11785-6. | Heckelman LN | Sci Rep | 2022 | 2022/05/13 | PMC9098419 | 10.1038/s41598-022-11785-6 | |
31297614 | Age Prediction Based on Brain MRI Image: A Survey | Sajedi H, Pardakhti N. | J Med Syst. 2019 Jul 11;43(8):279. doi: 10.1007/s10916-019-1401-7. | Sajedi H | J Med Syst | 2019 | 2019/07/13 | 10.1007/s10916-019-1401-7 | ||
34968699 | Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction | Huang J, Wang S, Zhou G, Hu W, Yu G. | Magn Reson Imaging. 2022 Apr;87:38-46. doi: 10.1016/j.mri.2021.12.003. Epub 2021 Dec 27. | Huang J | Magn Reson Imaging | 2022 | 2021/12/30 | 10.1016/j.mri.2021.12.003 | ||
30536427 | SUSAN: segment unannotated image structure using adversarial network | Liu F. | Magn Reson Med. 2019 May;81(5):3330-3345. doi: 10.1002/mrm.27627. Epub 2018 Dec 10. | Liu F | Magn Reson Med | 2019 | 2018/12/12 | PMC7140982 | NIHMS1572885 | 10.1002/mrm.27627 |
33075675 | The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs | Kessler DA, MacKay JW, Crowe VA, Henson FMD, Graves MJ, Gilbert FJ, Kaggie JD. | Comput Med Imaging Graph. 2020 Dec;86:101793. doi: 10.1016/j.compmedimag.2020.101793. Epub 2020 Sep 28. | Kessler DA | Comput Med Imaging Graph | 2020 | 2020/10/19 | PMC7721597 | 10.1016/j.compmedimag.2020.101793 | |
33458865 | A transfer learning approach for automatic segmentation of the surgically treated anterior cruciate ligament | Flannery SW, Kiapour AM, Edgar DJ, Murray MM, Beveridge JE, Fleming BC. | J Orthop Res. 2022 Jan;40(1):277-284. doi: 10.1002/jor.24984. Epub 2021 Jan 27. | Flannery SW | J Orthop Res | 2022 | 2021/01/18 | PMC8285460 | NIHMS1664227 | 10.1002/jor.24984 |
34148167 | MR-contrast-aware image-to-image translations with generative adversarial networks | Denck J, Guehring J, Maier A, Rothgang E. | Int J Comput Assist Radiol Surg. 2021 Dec;16(12):2069-2078. doi: 10.1007/s11548-021-02433-x. Epub 2021 Jun 20. | Denck J | Int J Comput Assist Radiol Surg | 2021 | 2021/06/20 | PMC8616894 | 10.1007/s11548-021-02433-x | |
37492386 | uRP: An integrated research platform for one-stop analysis of medical images | Wu J, Xia Y, Wang X, Wei Y, Liu A, Innanje A, Zheng M, Chen L, Shi J, Wang L, Zhan Y, Zhou XS, Xue Z, Shi F, Shen D. | Front Radiol. 2023 Apr 18;3:1153784. doi: 10.3389/fradi.2023.1153784. eCollection 2023. | Wu J | Front Radiol | 2023 | 2023/07/26 | PMC10365282 | 10.3389/fradi.2023.1153784 | |
36650496 | Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol | Kulseng CPS, Nainamalai V, Grøvik E, Geitung JT, Årøen A, Gjesdal KI. | BMC Musculoskelet Disord. 2023 Jan 18;24(1):41. doi: 10.1186/s12891-023-06153-y. | Kulseng CPS | BMC Musculoskelet Disord | 2023 | 2023/01/17 | PMC9847207 | 10.1186/s12891-023-06153-y | |
33154515 | Rapid mono and biexponential 3D-T(1ρ) mapping of knee cartilage using variational networks | Zibetti MVW, Johnson PM, Sharafi A, Hammernik K, Knoll F, Regatte RR. | Sci Rep. 2020 Nov 5;10(1):19144. doi: 10.1038/s41598-020-76126-x. | Zibetti MVW | Sci Rep | 2020 | 2020/11/06 | PMC7645759 | 10.1038/s41598-020-76126-x | |
36085911 | DVS-Net: Dual-domain Variable Splitting Network for Accelerated Parallel MRI Data | Ding R, Bartlett J, Duan J, Duan Y. | Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2219-2223. doi: 10.1109/EMBC48229.2022.9871425. | Ding R | Annu Int Conf IEEE Eng Med Biol Soc | 2022 | 2022/09/10 | 10.1109/EMBC48229.2022.9871425 | ||
32882339 | A multi-scale residual network for accelerated radial MR parameter mapping | Fu Z, Mandava S, Keerthivasan MB, Li Z, Johnson K, Martin DR, Altbach MI, Bilgin A. | Magn Reson Imaging. 2020 Nov;73:152-162. doi: 10.1016/j.mri.2020.08.013. Epub 2020 Sep 1. | Fu Z | Magn Reson Imaging | 2020 | 2020/09/04 | PMC7580302 | NIHMS1626997 | 10.1016/j.mri.2020.08.013 |
29526784 | Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative | Tack A, Mukhopadhyay A, Zachow S. | Osteoarthritis Cartilage. 2018 May;26(5):680-688. doi: 10.1016/j.joca.2018.02.907. Epub 2018 Mar 9. | Tack A | Osteoarthritis Cartilage | 2018 | 2018/03/13 | 10.1016/j.joca.2018.02.907 | ||
35705930 | Automated detection of anterior cruciate ligament tears using a deep convolutional neural network | Minamoto Y, Akagi R, Maki S, Shiko Y, Tozawa R, Kimura S, Yamaguchi S, Kawasaki Y, Ohtori S, Sasho T. | BMC Musculoskelet Disord. 2022 Jun 15;23(1):577. doi: 10.1186/s12891-022-05524-1. | Minamoto Y | BMC Musculoskelet Disord | 2022 | 2022/06/15 | PMC9199233 | 10.1186/s12891-022-05524-1 | |
36573479 | Democratization of deep learning for segmenting cartilage from MRIs of human knees: Application to data from the osteoarthritis initiative | Rodriguez-Vila B, Gonzalez-Hospital V, Puertas E, Beunza JJ, Pierce DM. | J Orthop Res. 2023 Aug;41(8):1754-1766. doi: 10.1002/jor.25509. Epub 2023 Jan 7. | Rodriguez-Vila B | J Orthop Res | 2023 | 2022/12/27 | 10.1002/jor.25509 | ||
34753963 | Uncovering associations between data-driven learned qMRI biomarkers and chronic pain | Morales AG, Lee JJ, Caliva F, Iriondo C, Liu F, Majumdar S, Pedoia V. | Sci Rep. 2021 Nov 9;11(1):21989. doi: 10.1038/s41598-021-01111-x. | Morales AG | Sci Rep | 2021 | 2021/11/10 | PMC8578418 | 10.1038/s41598-021-01111-x | |
30860285 | MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping | Liu F, Feng L, Kijowski R. | Magn Reson Med. 2019 Jul;82(1):174-188. doi: 10.1002/mrm.27707. Epub 2019 Mar 12. | Liu F | Magn Reson Med | 2019 | 2019/03/13 | PMC7144418 | NIHMS1566608 | 10.1002/mrm.27707 |
35494819 | Multi-level pooling encoder-decoder convolution neural network for MRI reconstruction | Karnjanapreechakorn S, Kusakunniran W, Siriapisith T, Saiviroonporn P. | PeerJ Comput Sci. 2022 Mar 30;8:e934. doi: 10.7717/peerj-cs.934. eCollection 2022. | Karnjanapreechakorn S | PeerJ Comput Sci | 2022 | 2022/05/02 | PMC9044365 | 10.7717/peerj-cs.934 | |
29584598 | Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry | Norman B, Pedoia V, Majumdar S. | Radiology. 2018 Jul;288(1):177-185. doi: 10.1148/radiol.2018172322. Epub 2018 Mar 27. | Norman B | Radiology | 2018 | 2018/03/28 | PMC6013406 | NIHMS967812 | 10.1148/radiol.2018172322 |
32691905 | T(2) analysis of the entire osteoarthritis initiative dataset | Razmjoo A, Caliva F, Lee J, Liu F, Joseph GB, Link TM, Majumdar S, Pedoia V. | J Orthop Res. 2021 Jan;39(1):74-85. doi: 10.1002/jor.24811. Epub 2020 Jul 27. | Razmjoo A | J Orthop Res | 2021 | 2020/07/22 | 10.1002/jor.24811 | ||
33966462 | Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction | Lv J, Zhu J, Yang G. | Philos Trans A Math Phys Eng Sci. 2021 Jun 28;379(2200):20200203. doi: 10.1098/rsta.2020.0203. Epub 2021 May 10. | Lv J | Philos Trans A Math Phys Eng Sci | 2021 | 2021/05/10 | 10.1098/rsta.2020.0203 | ||
36423533 | Denoising of three-dimensional fast spin echo magnetic resonance images of knee joints using spatial-variant noise-relevant residual learning of convolution neural network | Zhao S, Cahill DG, Li S, Xiao F, Blu T, Griffith JF, Chen W. | Comput Biol Med. 2022 Dec;151(Pt A):106295. doi: 10.1016/j.compbiomed.2022.106295. Epub 2022 Nov 9. | Zhao S | Comput Biol Med | 2022 | 2022/11/24 | 10.1016/j.compbiomed.2022.106295 | ||
35508147 | Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction | Karkalousos D, Noteboom S, Hulst HE, Vos FM, Caan MWA. | Phys Med Biol. 2022 Jun 8;67(12). doi: 10.1088/1361-6560/ac6cc2. | Karkalousos D | Phys Med Biol | 2022 | 2022/05/04 | 10.1088/1361-6560/ac6cc2 | ||
34834515 | Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging | Awan MJ, Rahim MSM, Salim N, Rehman A, Nobanee H, Shabir H. | J Pers Med. 2021 Nov 9;11(11):1163. doi: 10.3390/jpm11111163. | Awan MJ | J Pers Med | 2021 | 2021/11/27 | PMC8617867 | 10.3390/jpm11111163 | |
36603439 | SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction | Zhao X, Yang T, Li B, Zhang X. | Comput Biol Med. 2023 Feb;153:106513. doi: 10.1016/j.compbiomed.2022.106513. Epub 2022 Dec 31. | Zhao X | Comput Biol Med | 2023 | 2023/01/05 | 10.1016/j.compbiomed.2022.106513 | ||
30306701 | 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects | Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. | J Magn Reson Imaging. 2019 Feb;49(2):400-410. doi: 10.1002/jmri.26246. Epub 2018 Oct 10. | Pedoia V | J Magn Reson Imaging | 2019 | 2018/10/12 | PMC6521715 | NIHMS1012205 | 10.1002/jmri.26246 |
34031789 | A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative | Deng Y, You L, Wang Y, Zhou X. | J Digit Imaging. 2021 Aug;34(4):833-840. doi: 10.1007/s10278-021-00464-z. Epub 2021 May 24. | Deng Y | J Digit Imaging | 2021 | 2021/05/25 | PMC8455760 | 10.1007/s10278-021-00464-z | |
32523326 | Networks for Joint Affine and Non-parametric Image Registration | Shen Z, Han X, Xu Z, Niethammer M. | Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:4219-4228. doi: 10.1109/cvpr.2019.00435. Epub 2020 Jan 9. | Shen Z | Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit | 2019 | 2020/06/12 | PMC7286599 | NIHMS1033312 | 10.1109/cvpr.2019.00435 |
34460769 | Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks | Denck J, Guehring J, Maier A, Rothgang E. | J Imaging. 2021 Aug 4;7(8):133. doi: 10.3390/jimaging7080133. | Denck J | J Imaging | 2021 | 2021/08/30 | PMC8404922 | 10.3390/jimaging7080133 | |
36384059 | A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation | Chadoulos CG, Tsaopoulos DE, Moustakidis S, Tsakiridis NL, Theocharis JB. | Comput Methods Programs Biomed. 2022 Dec;227:107208. doi: 10.1016/j.cmpb.2022.107208. Epub 2022 Oct 28. | Chadoulos CG | Comput Methods Programs Biomed | 2022 | 2022/11/17 | 10.1016/j.cmpb.2022.107208 | ||
35339616 | DBGAN: A dual-branch generative adversarial network for undersampled MRI reconstruction | Liu X, Du H, Xu J, Qiu B. | Magn Reson Imaging. 2022 Jun;89:77-91. doi: 10.1016/j.mri.2022.03.003. Epub 2022 Mar 24. | Liu X | Magn Reson Imaging | 2022 | 2022/03/27 | 10.1016/j.mri.2022.03.003 | ||
33018271 | High-Fidelity Accelerated MRI Reconstruction by Scan-Specific Fine-Tuning of Physics-Based Neural Networks | Hossein Hosseini SA, Yaman B, Moeller S, Akcakaya M. | Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1481-1484. doi: 10.1109/EMBC44109.2020.9176241. | Hossein Hosseini SA | Annu Int Conf IEEE Eng Med Biol Soc | 2020 | 2020/10/06 | PMC8597413 | NIHMS1753915 | 10.1109/EMBC44109.2020.9176241 |
34823835 | Automated tibiofemoral joint segmentation based on deeply supervised 2D-3D ensemble U-Net: Data from the Osteoarthritis Initiative | Latif MHA, Faye I. | Artif Intell Med. 2021 Dec;122:102213. doi: 10.1016/j.artmed.2021.102213. Epub 2021 Nov 14. | Latif MHA | Artif Intell Med | 2021 | 2021/11/26 | 10.1016/j.artmed.2021.102213 | ||
34988758 | Entropy and distance maps-guided segmentation of articular cartilage: data from the Osteoarthritis Initiative | Li Z, Chen K, Liu P, Chen X, Zheng G. | Int J Comput Assist Radiol Surg. 2022 Mar;17(3):553-560. doi: 10.1007/s11548-021-02555-2. Epub 2022 Jan 6. | Li Z | Int J Comput Assist Radiol Surg | 2022 | 2022/01/06 | 10.1007/s11548-021-02555-2 | ||
31402520 | Fully automated patellofemoral MRI segmentation using holistically nested networks: Implications for evaluating patellofemoral osteoarthritis, pain, injury, pathology, and adolescent development | Cheng R, Alexandridi NA, Smith RM, Shen A, Gandler W, McCreedy E, McAuliffe MJ, Sheehan FT. | Magn Reson Med. 2020 Jan;83(1):139-153. doi: 10.1002/mrm.27920. Epub 2019 Aug 11. | Cheng R | Magn Reson Med | 2020 | 2019/08/13 | PMC6778709 | NIHMS1041450 | 10.1002/mrm.27920 |
37426618 | Evaluation of effects of small-incision approach treatment on proximal tibia fracture by deep learning algorithm-based magnetic resonance imaging | Li X, Yu H, Li F, He Y, Xu L, Xiao J. | Open Life Sci. 2023 Jul 6;18(1):20220624. doi: 10.1515/biol-2022-0624. eCollection 2023. | Li X | Open Life Sci | 2023 | 2023/07/10 | PMC10329276 | 10.1515/biol-2022-0624 | |
32956805 | Deriving new soft tissue contrasts from conventional MR images using deep learning | Wu Y, Li D, Xing L, Gold G. | Magn Reson Imaging. 2020 Dec;74:121-127. doi: 10.1016/j.mri.2020.09.014. Epub 2020 Sep 19. | Wu Y | Magn Reson Imaging | 2020 | 2020/09/21 | PMC7669656 | NIHMS1632926 | 10.1016/j.mri.2020.09.014 |
31049802 | Extending pretrained segmentation networks with additional anatomical structures | Ozdemir F, Goksel O. | Int J Comput Assist Radiol Surg. 2019 Jul;14(7):1187-1195. doi: 10.1007/s11548-019-01984-4. Epub 2019 May 2. | Ozdemir F | Int J Comput Assist Radiol Surg | 2019 | 2019/05/04 | 10.1007/s11548-019-01984-4 | ||
35951046 | Diabetes-associated thigh muscle degeneration mediates knee osteoarthritis-related outcomes: results from a longitudinal cohort study | Mohajer B, Moradi K, Guermazi A, Dolatshahi M, Zikria B, Najafzadeh N, Kalyani RR, Roemer FW, Berenbaum F, Demehri S. | Eur Radiol. 2023 Jan;33(1):595-605. doi: 10.1007/s00330-022-09035-4. Epub 2022 Aug 11. | Mohajer B | Eur Radiol | 2023 | 2022/08/11 | PMC10448875 | NIHMS1916796 | 10.1007/s00330-022-09035-4 |
34876922 | Complexity Assessment of Chronic Pain in Elderly Knee Osteoarthritis Based on Neuroimaging Recognition Techniques | Wu X, Liu J, Liu M, Wu T. | Comput Math Methods Med. 2021 Nov 28;2021:7344102. doi: 10.1155/2021/7344102. eCollection 2021. | Wu X | Comput Math Methods Med | 2021 | 2021/12/08 | PMC8645396 | 10.1155/2021/7344102 | |
35364383 | Improved-Mask R-CNN: Towards an accurate generic MSK MRI instance segmentation platform (data from the Osteoarthritis Initiative) | Felfeliyan B, Hareendranathan A, Kuntze G, Jaremko JL, Ronsky JL. | Comput Med Imaging Graph. 2022 Apr;97:102056. doi: 10.1016/j.compmedimag.2022.102056. Epub 2022 Mar 19. | Felfeliyan B | Comput Med Imaging Graph | 2022 | 2022/04/01 | 10.1016/j.compmedimag.2022.102056 | ||
34617020 | Synthesizing Quantitative T2 Maps in Right Lateral Knee Femoral Condyles from Multicontrast Anatomic Data with a Conditional Generative Adversarial Network | Sveinsson B, Chaudhari AS, Zhu B, Koonjoo N, Torriani M, Gold GE, Rosen MS. | Radiol Artif Intell. 2021 May 26;3(5):e200122. doi: 10.1148/ryai.2021200122. eCollection 2021 Sep. | Sveinsson B | Radiol Artif Intell | 2021 | 2021/10/07 | PMC8489449 | 10.1148/ryai.2021200122 | |
33241856 | Automated magnetic resonance image segmentation of the anterior cruciate ligament | Flannery SW, Kiapour AM, Edgar DJ, Murray MM, Fleming BC. | J Orthop Res. 2021 Apr;39(4):831-840. doi: 10.1002/jor.24926. Epub 2020 Dec 7. | Flannery SW | J Orthop Res | 2021 | 2020/11/26 | PMC8005419 | NIHMS1651243 | 10.1002/jor.24926 |
35245407 | Personalized Risk Model and Leveraging of Magnetic Resonance Imaging-Based Structural Phenotypes and Clinical Factors to Predict Incidence of Radiographic Osteoarthritis | Lee JJ, Namiri NK, Astuto B, Link TM, Majumdar S, Pedoia V. | Arthritis Care Res (Hoboken). 2023 Mar;75(3):501-508. doi: 10.1002/acr.24877. Epub 2022 Dec 10. | Lee JJ | Arthritis Care Res (Hoboken) | 2023 | 2022/03/04 | 10.1002/acr.24877 | ||
32479671 | Deep-learned short tau inversion recovery imaging using multi-contrast MR images | Kim S, Jang H, Jang J, Lee YH, Hwang D. | Magn Reson Med. 2020 Dec;84(6):2994-3008. doi: 10.1002/mrm.28327. Epub 2020 Jun 1. | Kim S | Magn Reson Med | 2020 | 2020/06/02 | 10.1002/mrm.28327 | ||
33337584 | Detection of Differences in Longitudinal Cartilage Thickness Loss Using a Deep-Learning Automated Segmentation Algorithm: Data From the Foundation for the National Institutes of Health Biomarkers Study of the Osteoarthritis Initiative | Eckstein F, Chaudhari AS, Fuerst D, Gaisberger M, Kemnitz J, Baumgartner CF, Konukoglu E, Hunter DJ, Wirth W. | Arthritis Care Res (Hoboken). 2022 Jun;74(6):929-936. doi: 10.1002/acr.24539. Epub 2022 Apr 1. | Eckstein F | Arthritis Care Res (Hoboken) | 2022 | 2020/12/18 | PMC9321555 | 10.1002/acr.24539 | |
37292137 | Automated MRI quantification of volumetric per-muscle fat fractions in the proximal leg of patients with muscular dystrophies | Huysmans L, De Wel B, Claeys KG, Maes F. | Front Neurol. 2023 May 24;14:1200727. doi: 10.3389/fneur.2023.1200727. eCollection 2023. | Huysmans L | Front Neurol | 2023 | 2023/06/09 | PMC10244517 | 10.3389/fneur.2023.1200727 | |
33747334 | Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms | Hosseini SAH, Yaman B, Moeller S, Hong M, Akçakaya M. | IEEE J Sel Top Signal Process. 2020 Oct;14(6):1280-1291. doi: 10.1109/jstsp.2020.3003170. Epub 2020 Jun 17. | Hosseini SAH | IEEE J Sel Top Signal Process | 2020 | 2021/03/22 | PMC7978039 | NIHMS1632252 | 10.1109/jstsp.2020.3003170 |
36581003 | A More Posterior Tibial Tubercle (Decreased Sagittal Tibial Tubercle-Trochlear Groove Distance) Is Significantly Associated With Patellofemoral Joint Degenerative Cartilage Change: A Deep Learning Analysis | Namiri NK, Càliva F, Martinez AM, Pedoia V, Lansdown DA. | Arthroscopy. 2023 Jun;39(6):1493-1501.e2. doi: 10.1016/j.arthro.2022.11.040. Epub 2022 Dec 26. | Namiri NK | Arthroscopy | 2023 | 2022/12/29 | 10.1016/j.arthro.2022.11.040 | ||
34359308 | Comparison of the Predicting Performance for Fate of Medial Meniscus Posterior Root Tear Based on Treatment Strategies: A Comparison between Logistic Regression, Gradient Boosting, and CNN Algorithms | Lee JI, Kim DH, Yoo HJ, Choi HG, Lee YS. | Diagnostics (Basel). 2021 Jul 7;11(7):1225. doi: 10.3390/diagnostics11071225. | Lee JI | Diagnostics (Basel) | 2021 | 2021/08/07 | PMC8304966 | 10.3390/diagnostics11071225 | |
31644542 | Optimized fast GPU implementation of robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction | Zhang C, Hosseini SAH, Weingärtner S, Uǧurbil K, Moeller S, Akçakaya M. | PLoS One. 2019 Oct 23;14(10):e0223315. doi: 10.1371/journal.pone.0223315. eCollection 2019. | Zhang C | PLoS One | 2019 | 2019/10/24 | PMC6808331 | 10.1371/journal.pone.0223315 | |
30903682 | Quantification of patellofemoral cartilage deformation and contact area changes in response to static loading via high-resolution MRI with prospective motion correction | Lange T, Taghizadeh E, Knowles BR, Südkamp NP, Zaitsev M, Meine H, Izadpanah K. | J Magn Reson Imaging. 2019 Nov;50(5):1561-1570. doi: 10.1002/jmri.26724. Epub 2019 Mar 23. | Lange T | J Magn Reson Imaging | 2019 | 2019/03/24 | 10.1002/jmri.26724 | ||
33585029 | Studying human-AI collaboration protocols: the case of the Kasparov's law in radiological double reading | Cabitza F, Campagner A, Sconfienza LM. | Health Inf Sci Syst. 2021 Feb 5;9(1):8. doi: 10.1007/s13755-021-00138-8. eCollection 2021 Dec. | Cabitza F | Health Inf Sci Syst | 2021 | 2021/02/15 | PMC7864624 | 10.1007/s13755-021-00138-8 | |
33640877 | [Segmentation of knee cartilages in MR images with artificial intelligence] | Szoldán P, Egyed Z, Szabó E, Somogyi J, Hangody G, Hangody L. | Orv Hetil. 2021 Feb 28;162(9):352-360. doi: 10.1556/650.2021.32034. | Szoldán P | Orv Hetil | 2021 | 2021/02/28 | 10.1556/650.2021.32034 | ||
36343061 | Development of convolutional neural network model for diagnosing tear of anterior cruciate ligament using only one knee magnetic resonance image | Shin H, Choi GS, Chang MC. | Medicine (Baltimore). 2022 Nov 4;101(44):e31510. doi: 10.1097/MD.0000000000031510. | Shin H | Medicine (Baltimore) | 2022 | 2022/11/07 | PMC9646554 | 10.1097/MD.0000000000031510 | |
34524564 | Automatic segmentation of whole-body adipose tissue from magnetic resonance fat fraction images based on machine learning | Wang Z, Cheng C, Peng H, Qi Y, Wan Q, Zhou H, Qu S, Liang D, Liu X, Zheng H, Zou C. | MAGMA. 2022 Apr;35(2):193-203. doi: 10.1007/s10334-021-00958-5. Epub 2021 Sep 15. | Wang Z | MAGMA | 2022 | 2021/09/15 | 10.1007/s10334-021-00958-5 |
The authors have declared that no competing interests exist.
References
- 1.Traumatic knee injuries in 2016-2019 - an analysis of newly diagnosed patients based on NHF data reporting. Bednarski P, Piekarska K. Ortop Traumatol Rehabil. 2021;23:181–192. doi: 10.5604/01.3001.0014.9155. [DOI] [PubMed] [Google Scholar]
- 2.Prevalence of knee injuries among male college students in Riyadh, Kingdom of Saudi Arabia. Almaawi A, Awwad W, Bamugaddam A, Alasheikh M, Muaddi M, Almutair O, Alomar AZ. J Orthop Surg Res. 2020;15:126. doi: 10.1186/s13018-020-01638-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Estimating the prevalence of knee pain and the association between illness perception profiles and self-management strategies in the Frederiksberg cohort of elderly individuals with knee pain: a cross-sectional study. Ginnerup-Nielsen E, Christensen R, Heitmann BL, et al. J Clin Med. 2021;10 doi: 10.3390/jcm10040668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Prevalence of concomitant knee injuries associated with anterior cruciate ligament tear in kabaddi and football players. Gupta R, Kapoor A, DavidMasih G. J Clin Orthop Trauma. 2020;11:0–8. doi: 10.1016/j.jcot.2020.05.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Work-related knee injuries treated in US emergency departments. Chen Z, Chakrabarty S, Levine RS, Aliyu MH, Ding T, Jackson LL. J Occup Environ Med. 2013;55:1091–1099. doi: 10.1097/JOM.0b013e31829b27bf. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.McDonald AT, Gross LB. The Sports Medicine Resource Manual. Amsterdam: Elsevier B.V; 2008. Knee injuries; pp. 328–341. [Google Scholar]
- 7.Indirect structural muscle injuries of lower limb: rehabilitation and therapeutic exercise. Palermi S, Massa B, Vecchiato M, et al. J Funct Morphol Kinesiol. 2021;6 doi: 10.3390/jfmk6030075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Tendinopathies of the hip and pelvis in athletes: a narrative review. Sirico F, Palermi S, Massa B, Corrado B. J Hum Sports Exerc. 2020;15:748–762. [Google Scholar]
- 9.Anterior cruciate ligament tear. Musahl V, Karlsson J. N Engl J Med. 2019;380:2341–2348. doi: 10.1056/NEJMcp1805931. [DOI] [PubMed] [Google Scholar]
- 10.A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. Alanazi HO, Abdullah AH, Qureshi KN. J Med Syst. 2017;41:69. doi: 10.1007/s10916-017-0715-6. [DOI] [PubMed] [Google Scholar]
- 11.Pitfalls and pearls in MRI of the knee. Mohankumar R, White LM, Naraghi A. AJR Am J Roentgenol. 2014;203:516–530. doi: 10.2214/AJR.14.12969. [DOI] [PubMed] [Google Scholar]
- 12.Normative values for the KOOS and WOMAC in a young athletic population: history of knee ligament injury is associated with lower scores. Cameron KL, Thompson BS, Peck KY, Owens BD, Marshall SW, Svoboda SJ. Am J Sports Med. 2013;41:582–589. doi: 10.1177/0363546512472330. [DOI] [PubMed] [Google Scholar]
- 13.Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. Bien N, Rajpurkar P, Ball RL, et al. PLoS Med. 2018;15:0. doi: 10.1371/journal.pmed.1002699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Deep learning in medical image analysis. Shen D, Wu G, Suk HI. Annu Rev Biomed Eng. 2017;19:221–248. doi: 10.1146/annurev-bioeng-071516-044442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.What are the applications and limitations of artificial intelligence for fracture detection and classification in orthopaedic trauma imaging? A systematic review. Langerhuizen DW, Janssen SJ, Mallee WH, et al. Clin Orthop Relat Res. 2019;477:2482–2491. doi: 10.1097/CORR.0000000000000848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Diagnostic performance of artificial intelligence for detection of anterior cruciate ligament and meniscus tears: a systematic review. Kunze KN, Rossi DM, White GM, Karhade AV, Deng J, Williams BT, Chahla J. Arthroscopy. 2021;37:771–781. doi: 10.1016/j.arthro.2020.09.012. [DOI] [PubMed] [Google Scholar]
- 17.ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Sterne JA, Hernán MA, Reeves BC, et al. BMJ. 2016;355:0. doi: 10.1136/bmj.i4919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model. Li J, Qian K, Liu J, et al. J Orthop Translat. 2022;34:91–101. doi: 10.1016/j.jot.2022.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury. Li Z, Ren S, Zhou R, Jiang X, You T, Li C, Zhang W. J Healthc Eng. 2021;2021:4076175. doi: 10.1155/2021/4076175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach. Awan MJ, Rahim MS, Salim N, Mohammed MA, Garcia-Zapirain B, Abdulkareem KH. Diagnostics (Basel) 2021;11 doi: 10.3390/diagnostics11010105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Interpretable and lightweight 3-D deep learning model for automated ACL diagnosis. Jeon Y, Yoshino K, Hagiwara S, Watanabe A, Quek ST, Yoshioka H, Feng M. IEEE J Biomed Health Inform. 2021;25:2388–2397. doi: 10.1109/JBHI.2021.3081355. [DOI] [PubMed] [Google Scholar]
- 22.Meniscal lesion detection and characterization in adult knee MRI: a deep learning model approach with external validation. Rizk B, Brat H, Zille P, et al. Phys Med. 2021;83:64–71. doi: 10.1016/j.ejmp.2021.02.010. [DOI] [PubMed] [Google Scholar]
- 23.Transmed: transformers advance multi-modal medical image classification. Dai Y, Gao Y, Liu F. Diagnostics (Basel) 2021;11 doi: 10.3390/diagnostics11081384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies. Astuto B, Flament I, K Namiri N, et al. Radiol Artif Intell. 2021;3:0. doi: 10.1148/ryai.2021200165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference. Fritz B, Marbach G, Civardi F, Fucentese SF, Pfirrmann CW. Skeletal Radiol. 2020;49:1207–1217. doi: 10.1007/s00256-020-03410-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI. Namiri NK, Flament I, Astuto B, et al. Radiol Artif Intell. 2020;2:0. doi: 10.1148/ryai.2020190207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. Zhang L, Li M, Zhou Y, Lu G, Zhou Q. J Magn Reson Imaging. 2020;52:1745–1752. doi: 10.1002/jmri.27266. [DOI] [PubMed] [Google Scholar]
- 28.Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-t and 3-t magnetic field strengths. Germann C, Marbach G, Civardi F, et al. Invest Radiol. 2020;55:499–506. doi: 10.1097/RLI.0000000000000664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.A comparative study of existing and new deep learning methods for detecting knee injuries using the mrnet dataset. Azcona D, McGuinness K, Smeaton AF. Int Conf Eng Technol Technopreneurship. 2020:149–155. [Google Scholar]
- 30.Deep learning for detection of complete anterior cruciate ligament tear. Chang PD, Wong TT, Rasiej MJ. J Digit Imaging. 2019;32:980–986. doi: 10.1007/s10278-019-00193-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Liu F, Guan B, Zhou Z, et al. Radiol Artif Intell. 2019;1:180091. doi: 10.1148/ryai.2019180091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Couteaux V, Si-Mohamed S, Nempont O, et al. Diagn Interv Imaging. 2019;100:235–242. doi: 10.1016/j.diii.2019.03.002. [DOI] [PubMed] [Google Scholar]
- 33.3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. J Magn Reson Imaging. 2019;49:400–410. doi: 10.1002/jmri.26246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Artificial intelligence to diagnose meniscus tears on MRI. Roblot V, Giret Y, Bou Antoun M, et al. Diagn Interv Imaging. 2019;100:243–249. doi: 10.1016/j.diii.2019.02.007. [DOI] [PubMed] [Google Scholar]
- 35.Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Liu F, Zhou Z, Samsonov A, et al. Radiology. 2018;289:160–169. doi: 10.1148/radiol.2018172986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Semi-automated detection of anterior cruciate ligament injury from MRI. Štajduhar I, Mamula M, Miletić D, Ünal G. Comput Methods Programs Biomed. 2017;140:151–164. doi: 10.1016/j.cmpb.2016.12.006. [DOI] [PubMed] [Google Scholar]
- 37.Anterior cruciate ligament (ACL) Injury classification system using support vector machine (SVM) Mazlan SS, Ayob M, Bakti ZK. Int Conf Eng Technol Technopreneurship. 2017;2:1–5. [Google Scholar]
- 38.A computer-aided type-II fuzzy image processing for diagnosis of meniscus tear. Zarandi MH, Khadangi A, Karimi F, Turksen IB. J Digit Imaging. 2016;29:677–695. doi: 10.1007/s10278-016-9884-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging. Fu JC, Lin CC, Wang CN, Ou YK. J Ind Prod Eng. 2013;30:67–77. [Google Scholar]
- 40.Design of an intelligent diagnostic system for detection of knee injuries. Abdullah AA, Azz-Zahra NS. Appl Mech Mater. 2013;399:219–224. [Google Scholar]
- 41.Knee injury detection using deep learning on MRI studies: a systematic review. Siouras A, Moustakidis S, Giannakidis A, et al. Diagnostics (Basel) 2022;12 doi: 10.3390/diagnostics12020537. [DOI] [PMC free article] [PubMed] [Google Scholar]