Skip to main content
Cureus logoLink to Cureus
. 2023 Sep 21;15(9):e45730. doi: 10.7759/cureus.45730

A Comprehensive Review on the Diagnosis of Knee Injury by Deep Learning-Based Magnetic Resonance Imaging

Neha D Shetty 1, Rajasbala Dhande 1, Bhavik S Unadkat 1,, Pratapsingh Parihar 1
Editors: Alexander Muacevic, John R Adler
PMCID: PMC10590246  PMID: 37868582

Abstract

The continual improvement in the field of medical diagnosis has led to the monopoly of using deep learning (DL)-based magnetic resonance imaging (MRI) for the diagnosis of knee injury related to meniscal injury, ligament injury including the cruciate ligaments, collateral ligaments and medial patella-femoral ligament, and cartilage injury. The present systematic review was done by PubMed and Directory of Open Access Journals (DOAJ), wherein we finalised 24 studies conducted on the accuracy of DL MRI studies for knee injury identification. The studies showed an accuracy of 72.5% to 100% indicating that DL MRI holds an equivalent performance as humans in decision-making and management of knee injuries. This further opens up future exploration for improving MRI-based diagnosis keeping in mind the limitations of verification bias and data imbalance in ground truth subjectivity.

Keywords: meniscus tear, ligamentous knee injury, persistent knee pain, magnetic resonance imaging, deep-learning

Introduction and background

The knee joint, one of the large complex joints, has been the topic of most discussions in view of the injuries to various anatomical structures - ligaments (anterior cruciate ligament, posterior cruciate ligament, medial collateral ligament and lateral collateral ligament), meniscus (medial or lateral) and cartilage [1,2]. Knee injuries are reported to affect nearly 244,000 people annually, according to an analysis that included National Health Fund (NHF) data from 2016-2019 [1]. The prevalence of knee pain was reported as 21.4% [3]. In an Indian study, including 517 patients who underwent primary anterior cruciate ligament reconstruction (ACLR), 70% had a meniscal injury and 50% had chondral damage [4]. Acute knee injury is generally caused because of direct trauma, or due to excess tension, sudden twists, collisions, awkward movements, falls, excessive force, and overuse of joints [5]. Shoe wear, training surface conditions, and training regimen are the extrinsic factors, whereas ligamentous laxity, muscle weakness, reduced muscle flexibility, and foot shape are the intrinsic factors [6]. The possible effects of knee injuries include tendinopathies and structural muscle injuries of the lower limb [7,8]. Early detection of ruptured ligament, meniscal tears, as well as cartilage lesions and consequent treatment, are necessary for management, which can also delay the onset of knee osteoarthritis following a knee injury [9].

For the diagnosis, arthroscopy remains the gold-standard modality. However, its use over time has been restricted and overpowered by newer non-invasive investigations like magnetic resonance imaging (MRI) [10]. However, diagnosis of knee injury by MRI can be difficult, with clinicians' experience being crucial in image interpretation and the best management of knee injuries is sometimes hampered by limitations of the human mind in interpreting the imaging reports by factors like a distraction, workload, subjectivity, image quality and knowledge [11]. Furthermore, clinical-diagnostic differences between orthopaedic surgeons and non-musculoskeletal radiologists are frequently seen in day-to-day clinical practice [12]. Considering the rising cases of knee injuries and sports injuries and the above-mentioned factors, the use of artificial intelligence (AI) has become rampant in medical practice, whereby certain diagnostic algorithms are created based on digital imaging data collection and interpolation. AI involves a technique that makes it possible for computers to complement human intelligence. The growth of AI is specifically being driven by deep learning (DL), which falls under the category of machine learning (ML) algorithms. There have been several documented uses of DL in image interpretation, including classifying skin carcinoma, detecting lung nodules, mammography cancer, and diabetic retinopathy. AI-powered technologies are anticipated to change the medical field as they increase the diagnostic accuracy of several diagnostic and therapeutic techniques [13]. A number of early DL investigations have shown improved performance over conventional ML processes and are even found to be superior to radiologists in the diagnosis of knee injuries [14]. The limitations of prior conducted similar systematic reviews were that they included other knee injuries like bony fractures [15] or failed to address the limitation and strengths of various AI in deciding the performance of the system [16]. Taking into account the emerging AI technology as well as increasing research in similar fields, in this systematic review we conducted a comprehensive analysis of the literature, encompassing all DL-based methodologies which are employed in knee injury diagnosis. The present systematic review aimed to identify the latest studies that evaluated the role of DL in MRI-based knee injury diagnosis. The main emphasis was laid on research that assessed knee ligamentous tear, meniscal tears or cartilaginous lesions.

Review

Methods

Literature Search

We conducted a thorough search of studies as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, wherein two primary databases, PubMed and Directory of Open Access Journals (DOAJ), were reviewed by two primary authors and the data was extracted by the third author. An electronic data search was conducted on the databases of PubMed and DOAJ over a period of the last 10 years of published studies with specified dates from January 2013 till January 2023. For the database search, Medical Subject Headings (MeSH) keywords were used as per the PubMed dictionary separated by Boolean expression: "knee"[MeSH Terms] OR "knee joint"[MeSH Terms] AND "magnetic resonance imaging"[MeSH Terms] AND "machine learning"[MeSH Terms] in “All fields” as tag terms. The text words used in DOAJ were the same as MeSH terms used in PubMed without any additional filters. The articles were found to be eligible based on the title and the abstract. The full text of the articles was studied only after verification of their abstract and the title and the inclusion criteria (Figure 1).

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Flowchart.

Figure 1

DOAJ: Directory of Open Access Journals

Inclusion Criteria

Only full texts and papers were chosen for the study. English articles were included which were published over the last 10 years from January 2013 till January 2023. Studies that diagnosed knee injury based on the MRI deep learning AI-based algorithms and studies that mentioned the accuracy of the performance of AI algorithms were included.

Exclusion Criteria

Exclusion criteria were articles published before January 2013, articles dealing with injuries other than knee injuries, studies published on animals, studies other than original articles, i.e. review articles, systematic research or meta-analysis, studies written in a language other than English, and editorial commentaries and book chapters. 

Data Extraction

After downloading all the studies, the data was extracted and put in a table in Microsoft Spreadsheet. The information extracted from each article included the first name of the author, the year of publication, the description of data, the learning algorithm used, the sample size, the type of injury, and the accuracy of the DL model for diagnosis of a knee injury. 

Assessment of Risk of Bias

The assessment of the risk of bias was done by using the ROBINS-I tool which consists of seven parameters that include selection bias, measurement bias, attrition bias, confounding bias, performance bias, and outcome reporting bias. A total score categorized as low, moderate, and high was classified, wherein the presence of none of these confounding factors or one of these confounding factors led to the classification of low and two or more up to five led to the classification of moderate and five or more up to seven led to the classification of high risk of bias as for the eligible studies is shown in Table 1 [17].

Table 1. Risk of Bias Assessment.

L: Low, M: Moderate

Name of the author Confounding bias Selection bias Measurement on interventions bias Intended interventions (performance bias) Attrition bias Measurement bias Outcome reporting bias Overall Risk of bias
Li J et al, 2022 [18] - + + + - - Y M  
Li Z et al, 2021 [19] - - - - - - - L
Awan et al, 2021  [20 - + - - + - - M
Jeon et al, 2021  [21] - + - - + - - M
Rizk et al, 2021  [22] - - - - - - - L
Dai et al, 2021  [23] + - + + - - + M
Astuto et al, 2021  [24] - + - - + - - M
Fritz et al, 2020  [25] + - - + + - + M
Namiri et al, 2020 [26] - - - - - - - L
Zhang et al, 2020 [27] - - + + - - + M
Germann et al, 2020 [28] + - - + + - + M
Azcona et al, 2020 [29] - - - - - + - L
Chang et al, 2019 [30] - + - - + - - M
Liu et al, 2019 [31] - + - - + - - M
Couteaux et al, 2019 [32] - - + + - - + M
Pedoia et al, 2019 [33] - - - - - - - L
Roblot et al, 2019 [34] - + + - - - + M
Bien N et al, 2018 [13] + - - + + - + M
Liu et al, 2018 [35] + - + - - - + M
Štajduhar et al, 2017 [36] - + - - + - - M
Mazlan et al, 2017 [37] + - - - + - - M
Zarandi et al, 2016  [38] - - - - - - - L
Fu et al, 2013 [39] + - - - - - - L
Abdullah et al, 2013 [40] - - + + - - + M

Results

Search Results

Based on our search, we identified 203 articles in PubMed, 40 articles in DOAJ, and two articles from other references of the selected articles. Among them, there were 20 duplicate articles, which were excluded, and 225 articles were screened by two primary authors. Among them, 188 were excluded based on reasons that fell into the exclusion criteria and 37 full-text articles were downloaded. They were thoroughly screened, and 24 out of them were selected, and 13 were excluded since they did not have sufficient data to qualify for the systematic review. Finally, 24 studies were included in the systematic review, the characteristics of which are shown in Table 2.

Table 2. Study Characteristics.

DL: Deep Learning; ANN: Artificial Neural Networks; BP-ANN: Back Propagation ANN; CNN: Convolutional Neural Network; DCNN: Deep CNN; GIST: Generalized Search Tree; HOG: Histogram of Oriented Gradient; IT2FCM: Interval Type-2 Fuzzy C-Means; K-NN: K-Nearest Neighbor; PNN: Perceptron Neural Network; R-CNN: Region-Based CNN; SVM: Support Vector Machine; ACL: Anterior Cruciate Ligament

S.no. Author N Patient injury DL model (AI model used) MRI used (Tesla) Accuracy of DL  
1. Li J et al, 2022 [18] 200 Meniscus tear Mask R-CNN 1.5 T and 3.0 T Healthy: 87.50% Torn: 86.96% Degenerated meniscus: 84.78%  
2. Li Z et al, 2021 [19] 30 ACL CNN 2.0 92.17%  
3. Awan et al, 2021  [20 917 images ACL tear CNN 1.5 T Partial ACL tear: 0.97; full ACL tear: 0.99  
4 Jeon et al, 2021  [21] 2540 ACL tear 3D CNN 3 T & 1.5 T 0.98  
5 Rizk et al, 2021  [22] 7903 Meniscus tear 3D CNN 1-3 T Medial = 0.93, Lateral = 0.84  
6 Dai et al, 2021  [23] 1714 ACL tear, Meniscus tear TransMed 3 T & 1.5 T 94.9%/0.98, 85.3%/0.95  
7 Astuto et al, 2021  [24] 294 ACL tear—Meniscus tear—Cartilage lesion 3D CNN 3T from 0.83 to 0.93  
8 Fritz et al, 2020  [25] 100 Meniscus tear DCNN 1.5 T (64%)–3 T (36%) Medial = (86%/0.88), Lateral = (84%/0.78), Overall = (0.96)  
9 Namiri et al, 2020 [26] 224 ACL tear CNN 3T 3Dmodel = (89%/sensitivity of 89% and specificity of 88%), 2Dmodel = (92%/sensitivity of 93% and specificity of 90%)  
10 Zhang et al, 2020 [27] 408 ACL tear CNN 1.5 T (74%)–3 T (26%) 95.7%  
11 Germann et al, 2020 [28] 512 ACL tear DCNN 1.5 T–3 T 0.94  
12 Azcona et al, 2020 [29] - ACL tear, Meniscus tear CNN 1.5 T, 3 T 0.96, 0.91  
13 Chang et al, 2019 [30] 260 ACL tear CNN 1.5 T–3 T 96.7%/0.97  
14 Liu et al, 2019 [31] 175 ACL tear CNN N/A 0.98  
15 Couteaux et al, 2019 [32] 1128 images Meniscus tear CNN N/A 0.90  
16 Pedoia et al, 2019 [33] 302 Meniscus tear 2D U-Net, CNN 3T Sensitivity of 89.81% and specificity of 81.98%  
17 Roblot et al, 2019 [34] 1123 images Meniscus tear CNN N/A 72.5%/0.85  
18 Bien N et al, 2018 [13] Training set: 1,088 patients Tuning set: 111 patients Validation set: 113 patients  ACL tear—Meniscus tear— Abnormalities CNN 3 T (56.6%)–1.5 T (43.4%) 86.7%/0.97–72.5%/0.85– 0.94  
19 Liu et al, 2018 [35] 175 Cartilage lesion CNN 3T 0.92  
20 Štajduhar et al, 2017 [36] 969 images ACL tear HOG, GIST, RF 1.5T (Injury detection problem, complete rupture) = (0.89, 0.94), (0.88, 0.94), (0.889, 0.91), (0.88, 0.90) respectively with the models  
21 Mazlan et al, 2017 [37] 300 images ACL tear SVM N/A 100%  
22 Zarandi et al, 2016  [38] 28 Meniscus tear IT2FCM, PNN N/A 90%,78%  
23 Fu et al, 2013 [39] 166 images Meniscus tear SVM N/A SVM model: 0.73 SFFS + SVM: 0.91  
24 Abdullah et al, 2013 [40] 90 images ACL tear BP ANN, K-NN N/A BP ANN: 94.44% k-NN: 87.83%  

Study characteristics

The countries where the included studies were conducted were France [22,32,34], Switzerland [25,28], Ireland [29], USA [13,20,24,26,30,31,33,35], Turkey [36] and Asia [18,19,21,23,27,37-40]. The study period in those studies varied from five years to 18 years. 

Study outcomes

Anterior cruciate ligament (ACL) injuries were present in 16 studies [13,18,20,21,23,24,26-31,36,37,40], meniscus injuries in 12 studies [13,19,22-25,29,32-34,38-40], and cartilage lesion in two studies [24,35]. 

Accuracy of the artificial intelligence model

The overall accuracy of the AI model was 72.5% to 100% for knee injuries.

Risk of bias

In seven studies, the risk of bias was low [19,22,26,29,33,38,39] and in the remaining, i.e. 17 studies, the moderate risk was present [13,18,20,21,23-25,27,28,30-32,34-37,40].

Discussion

The present systematic review holds significance as it summarized all the studies that used deep learning MRI models for the diagnosis of knee injuries. Deep learning-based MRI is basically a part of artificial intelligence which is expanded in various domains in the entire world [41]. Performance and accuracy as seen among the studies ranged from 72.5% to 100% which is effective enough for expanding the medical experts’ knowledge and diagnostic skills for knee injuries. Our findings were in line with a previous systematic review conducted by Siouras et al. [41], who also quoted diagnostic accuracy of 72.5-100%, but the review was conducted on 22 studies. Another systematic review was conducted by Kunze et al. [16] including 11 studies, among which five evaluated ACL tears, five assessed meniscal tears, and one study assessed both where the area under the curve (AUC) for detecting ACL tear was in the range of 0.895 to 0.980 and for meniscus tear was 0.847 to 0.910. The use of deep learning has come frequently into practice since there is no gold standard scoring system to diagnose knee injuries. Artificial intelligence complements the human mind in a machine-operated way where the probability of diagnosing the injured knee becomes higher. This has been mainly based on the data augmentation and data acquiring for ACL, meniscal and cartilage injuries. Moreover, this has become possible through various image transformations which include shifting, and flipping rotations, thereby expanding the dataset and improving the performance of DL-based learning and diagnosis [41]. We noticed that studies reported a difference in the performance of deep learning MRI-based diagnosis accuracy and this variability in the performance of different studies might be because of the region of interest that may appear slightly different within an image and because of the different ratios and sizes. The lowest accuracy of 72.5% was reported by Roblot et al. [34] and Bien et al. [13], which was primarily on the diagnosis of meniscus tears using convolutional neural network, while the highest accuracy was reported by Mazlan et al. [37] of 100%, which was specifically on ACL tears with the AI model of support vector machine (SVM) being used which gives high data gap between injury data (actual data) and non-injury data. This shows that variability in performance can be due to data imbalance whereby patients have different grades of knee injuries, and the application of a uniform algorithm may not be as effective. So, multiple datasets are needed whereby deep learning can be effectively improved by expanding the MRI protocol thereby allowing it to perform in equivalence to the human mind - stressing the role of different AI models to be used and evaluation of the wide type of knee injuries to improve on the accuracy. The present systematic review holds strength in this regard since it covers many regions allowing for data pooling of three categories of knee injuries - thereby representing the multiset of data with the elimination of the bias and determining the effective performance of deep learning-based MRI.

Limitations

The present study was a systematic review, but it has certain limitations. Firstly, the meta-analysis was not done. Secondly, studies do not assess the combined use of machine learning and human learning. Thirdly, the gold standard diagnostic arthroscopy was not done in all the studies, which may have restricted the clinical applicability of the findings of the present study. In view of these limitations, future studies are recommended to expand the datasets and test the accuracy of machine deep learning-based MRI for the detection of knee injuries, especially meniscal, ACL, and cartilage injuries, and compare them with the gold standard non-invasive tests so that their applicability can be put to use soon. This shall help in the future to cover up for the workload which is expanding by leaps and bounds, whereby radiological imaging data has been expanding, but the number of radiologists is not increasing proportionally. The decision-making process is also hampered on this account. Thus AI systems can be a boon to humans. This is also essential because medical imaging is very sensitive in nature whereby quality and resolution demand high performance with minimal differences in diagnosing specific knee injuries. Training and specialization of the human eye and mind may require long experience before one may come to terms with machine-based learning [12-14].

Future directions

The findings of the present study show the different applications of deep learning MRI used till now, and there is still so much scope to fully exploit the full potential of this data where newer algorithms can be laid down by individual hospitals for making trustworthy detection systems for knee injuries. This demands further AI expandability and a collaboration of medical and IT fields to reach precision medicine. 

Conclusions

Deep-based learning methods have come a long way, showing performance accuracy of more than 75%, leading to significant use in clinical employment. However, there are so many algorithms to be laid down, and individual datasets need to be expanded by multiregional studies whereby deep-based MRI detection can become a norm in every hospital, thereby retaining the high-performance standards and yielding faster diagnosis and management.

Appendices

Table 3. List of articles searched from PubMed database.

PMID Title Authors Citation First Author Journal/Book Publication Year Create Date PMCID NIHMS ID DOI
34804143 Emergence of Deep Learning in Knee Osteoarthritis Diagnosis Yeoh PSQ, Lai KW, Goh SL, Hasikin K, Hum YC, Tee YK, Dhanalakshmi S. Comput Intell Neurosci. 2021 Nov 10;2021:4931437. doi: 10.1155/2021/4931437. eCollection 2021. Yeoh PSQ Comput Intell Neurosci 2021 2021/11/22 PMC8598325   10.1155/2021/4931437
35204625 Knee Injury Detection Using Deep Learning on MRI Studies: A Systematic Review Siouras A, Moustakidis S, Giannakidis A, Chalatsis G, Liampas I, Vlychou M, Hantes M, Tasoulis S, Tsaopoulos D. Diagnostics (Basel). 2022 Feb 19;12(2):537. doi: 10.3390/diagnostics12020537. Siouras A Diagnostics (Basel) 2022 2022/02/25 PMC8871256   10.3390/diagnostics12020537
32722605 A Comparative Systematic Literature Review on Knee Bone Reports from MRI, X-rays and CT Scans Using Deep Learning and Machine Learning Methodologies Khalid H, Hussain M, Al Ghamdi MA, Khalid T, Khalid K, Khan MA, Fatima K, Masood K, Almotiri SH, Farooq MS, Ahmed A. Diagnostics (Basel). 2020 Jul 26;10(8):518. doi: 10.3390/diagnostics10080518. Khalid H Diagnostics (Basel) 2020 2020/07/30 PMC7460189   10.3390/diagnostics10080518
35184211 Inferring pediatric knee skeletal maturity from MRI using deep learning Zech JR, Carotenuto G, Jaramillo D. Skeletal Radiol. 2022 Aug;51(8):1671-1677. doi: 10.1007/s00256-022-04010-y. Epub 2022 Feb 20. Zech JR Skeletal Radiol 2022 2022/02/20     10.1007/s00256-022-04010-y
35529263 Deep Learning-Based Multimodal 3 T MRI for the Diagnosis of Knee Osteoarthritis Hu Y, Tang J, Zhao S, Li Y. Comput Math Methods Med. 2022 Apr 29;2022:7643487. doi: 10.1155/2022/7643487. eCollection 2022. Hu Y Comput Math Methods Med 2022 2022/05/09 PMC9076302   10.1155/2022/7643487
36648347 Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI Johnson PM, Lin DJ, Zbontar J, Zitnick CL, Sriram A, Muckley M, Babb JS, Kline M, Ciavarra G, Alaia E, Samim M, Walter WR, Calderon L, Pock T, Sodickson DK, Recht MP, Knoll F. Radiology. 2023 Apr;307(2):e220425. doi: 10.1148/radiol.220425. Epub 2023 Jan 17. Johnson PM Radiology 2023 2023/01/17 PMC10102623   10.1148/radiol.220425
35776434 Deep Learning-Enhanced Parallel Imaging and Simultaneous Multislice Acceleration Reconstruction in Knee MRI Kim M, Lee SM, Park C, Lee D, Kim KS, Jeong HS, Kim S, Choi MH, Nickel D. Invest Radiol. 2022 Dec 1;57(12):826-833. doi: 10.1097/RLI.0000000000000900. Epub 2022 Jul 1. Kim M Invest Radiol 2022 2022/07/01     10.1097/RLI.0000000000000900
35262842 Automatic detection and classification of knee osteoarthritis using deep learning approach Abdullah SS, Rajasekaran MP. Radiol Med. 2022 Apr;127(4):398-406. doi: 10.1007/s11547-022-01476-7. Epub 2022 Mar 9. Abdullah SS Radiol Med 2022 2022/03/09     10.1007/s11547-022-01476-7
34142088 Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies Astuto B, Flament I, K Namiri N, Shah R, Bharadwaj U, M Link T, D Bucknor M, Pedoia V, Majumdar S. Radiol Artif Intell. 2021 Jan 20;3(3):e200165. doi: 10.1148/ryai.2021200165. eCollection 2021 May. Astuto B Radiol Artif Intell 2021 2021/06/18 PMC8166108   10.1148/ryai.2021200165
34324223 Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the Osteoarthritis Initiative Panfilov E, Tiulpin A, Nieminen MT, Saarakkala S, Casula V. J Orthop Res. 2022 May;40(5):1113-1124. doi: 10.1002/jor.25150. Epub 2021 Aug 6. Panfilov E J Orthop Res 2022 2021/07/29     10.1002/jor.25150
35726103 Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation Tran A, Lassalle L, Zille P, Guillin R, Pluot E, Adam C, Charachon M, Brat H, Wallaert M, d'Assignies G, Rizk B. Eur Radiol. 2022 Dec;32(12):8394-8403. doi: 10.1007/s00330-022-08923-z. Epub 2022 Jun 21. Tran A Eur Radiol 2022 2022/06/21     10.1007/s00330-022-08923-z
32755163 Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study Recht MP, Zbontar J, Sodickson DK, Knoll F, Yakubova N, Sriram A, Murrell T, Defazio A, Rabbat M, Rybak L, Kline M, Ciavarra G, Alaia EF, Samim M, Walter WR, Lin DJ, Lui YW, Muckley M, Huang Z, Johnson P, Stern R, Zitnick CL. AJR Am J Roentgenol. 2020 Dec;215(6):1421-1429. doi: 10.2214/AJR.20.23313. Epub 2020 Oct 14. Recht MP AJR Am J Roentgenol 2020 2020/08/07 PMC8209682 NIHMS1707476 10.2214/AJR.20.23313
34663440 A deep learning method for predicting knee osteoarthritis radiographic progression from MRI Schiratti JB, Dubois R, Herent P, Cahané D, Dachary J, Clozel T, Wainrib G, Keime-Guibert F, Lalande A, Pueyo M, Guillier R, Gabarroca C, Moingeon P. Arthritis Res Ther. 2021 Oct 18;23(1):262. doi: 10.1186/s13075-021-02634-4. Schiratti JB Arthritis Res Ther 2021 2021/10/19 PMC8521982   10.1186/s13075-021-02634-4
31877380 Osteoarthritis year in review 2019: imaging Kijowski R, Demehri S, Roemer F, Guermazi A. Osteoarthritis Cartilage. 2020 Mar;28(3):285-295. doi: 10.1016/j.joca.2019.11.009. Epub 2019 Dec 23. Kijowski R Osteoarthritis Cartilage 2020 2019/12/27     10.1016/j.joca.2019.11.009
31755191 Rapid Knee MRI Acquisition and Analysis Techniques for Imaging Osteoarthritis Chaudhari AS, Kogan F, Pedoia V, Majumdar S, Gold GE, Hargreaves BA. J Magn Reson Imaging. 2020 Nov;52(5):1321-1339. doi: 10.1002/jmri.26991. Epub 2019 Nov 21. Chaudhari AS J Magn Reson Imaging 2020 2019/11/23 PMC7925938 NIHMS1670032 10.1002/jmri.26991
34567478 Deep Learning-Based Image Feature with Arthroscopy-Aided Early Diagnosis and Treatment of Meniscus Injury of Knee Joint Li Z, Ren S, Zhang X, Bai L, Jiang C, Wu J, Zhang W. J Healthc Eng. 2021 Sep 17;2021:2254594. doi: 10.1155/2021/2254594. eCollection 2021. Li Z J Healthc Eng 2021 2021/09/27 PMC8463205   10.1155/2021/2254594
30481176 Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, Bereket M, Patel BN, Yeom KW, Shpanskaya K, Halabi S, Zucker E, Fanton G, Amanatullah DF, Beaulieu CF, Riley GM, Stewart RJ, Blankenberg FG, Larson DB, Jones RH, Langlotz CP, Ng AY, Lungren MP. PLoS Med. 2018 Nov 27;15(11):e1002699. doi: 10.1371/journal.pmed.1002699. eCollection 2018 Nov. Bien N PLoS Med 2018 2018/11/28 PMC6258509   10.1371/journal.pmed.1002699
33714850 Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation Rizk B, Brat H, Zille P, Guillin R, Pouchy C, Adam C, Ardon R, d'Assignies G. Phys Med. 2021 Mar;83:64-71. doi: 10.1016/j.ejmp.2021.02.010. Epub 2021 Mar 11. Rizk B Phys Med 2021 2021/03/14     10.1016/j.ejmp.2021.02.010
34211738 Applicability of deep learning-based reconstruction trained by brain and knee 3T MRI to lumbar 1.5T MRI Kashiwagi N, Tanaka H, Yamashita Y, Takahashi H, Kassai Y, Fujiwara M, Tomiyama N. Acta Radiol Open. 2021 Jun 18;10(6):20584601211023939. doi: 10.1177/20584601211023939. eCollection 2021 Jun. Kashiwagi N Acta Radiol Open 2021 2021/07/02 PMC8216362   10.1177/20584601211023939
37151912 Magnetic resonance imaging assessments for knee segmentation and their use in combination with machine/deep learning as predictors of early osteoarthritis diagnosis and prognosis Martel-Pelletier J, Paiement P, Pelletier JP. Ther Adv Musculoskelet Dis. 2023 Apr 28;15:1759720X231165560. doi: 10.1177/1759720X231165560. eCollection 2023. Martel-Pelletier J Ther Adv Musculoskelet Dis 2023 2023/05/08 PMC10155034   10.1177/1759720X231165560
35852498 Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry Schmidt AM, Desai AD, Watkins LE, Crowder HA, Black MS, Mazzoli V, Rubin EB, Lu Q, MacKay JW, Boutin RD, Kogan F, Gold GE, Hargreaves BA, Chaudhari AS. J Magn Reson Imaging. 2023 Apr;57(4):1029-1039. doi: 10.1002/jmri.28365. Epub 2022 Jul 19. Schmidt AM J Magn Reson Imaging 2023 2022/07/19 PMC9849481 NIHMS1822687 10.1002/jmri.28365
34347157 Deep learning in knee imaging: a systematic review utilizing a Checklist for Artificial Intelligence in Medical Imaging (CLAIM) Si L, Zhong J, Huo J, Xuan K, Zhuang Z, Hu Y, Wang Q, Zhang H, Yao W. Eur Radiol. 2022 Feb;32(2):1353-1361. doi: 10.1007/s00330-021-08190-4. Epub 2021 Aug 4. Si L Eur Radiol 2022 2021/08/04     10.1007/s00330-021-08190-4
33331995 Automated age estimation of young individuals based on 3D knee MRI using deep learning Mauer MA, Well EJ, Herrmann J, Groth M, Morlock MM, Maas R, Säring D. Int J Legal Med. 2021 Mar;135(2):649-663. doi: 10.1007/s00414-020-02465-z. Epub 2020 Dec 17. Mauer MA Int J Legal Med 2021 2020/12/17 PMC7870623   10.1007/s00414-020-02465-z
34157062 Erratum: Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies Astuto B, Flament I, Namiri NK, Shah R, Bharadwaj U, Link TM, Bucknor MD, Pedoia V, Majumdar S. Radiol Artif Intell. 2021 May 19;3(3):e219001. doi: 10.1148/ryai.2021219001. eCollection 2021 May. Astuto B Radiol Artif Intell 2021 2021/06/22 PMC8166114   10.1148/ryai.2021219001
35725760 Diagnostic advantage of thin slice 2D MRI and multiplanar reconstruction of the knee joint using deep learning based denoising approach Kakigi T, Sakamoto R, Tagawa H, Kuriyama S, Goto Y, Nambu M, Sagawa H, Numamoto H, Miyake KK, Saga T, Matsuda S, Nakamoto Y. Sci Rep. 2022 Jun 20;12(1):10362. doi: 10.1038/s41598-022-14190-1. Kakigi T Sci Rep 2022 2022/06/20 PMC9209466   10.1038/s41598-022-14190-1
36328943 End-to-end deep learning model for segmentation and severity staging of anterior cruciate ligament injuries from MRI Dung NT, Thuan NH, Van Dung T, Van Nho L, Tri NM, Vy VPT, Hoang LN, Phat NT, Chuong DA, Dang LH. Diagn Interv Imaging. 2023 Mar;104(3):133-141. doi: 10.1016/j.diii.2022.10.010. Epub 2022 Oct 31. Dung NT Diagn Interv Imaging 2023 2022/11/03     10.1016/j.diii.2022.10.010
35389046 Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol Herrmann J, Keller G, Gassenmaier S, Nickel D, Koerzdoerfer G, Mostapha M, Almansour H, Afat S, Othman AE. Eur Radiol. 2022 Sep;32(9):6215-6229. doi: 10.1007/s00330-022-08753-z. Epub 2022 Apr 7. Herrmann J Eur Radiol 2022 2022/04/07 PMC9381615   10.1007/s00330-022-08753-z
35373388 High fidelity deep learning-based MRI reconstruction with instance-wise discriminative feature matching loss Wang K, Tamir JI, De Goyeneche A, Wollner U, Brada R, Yu SX, Lustig M. Magn Reson Med. 2022 Jul;88(1):476-491. doi: 10.1002/mrm.29227. Epub 2022 Apr 3. Wang K Magn Reson Med 2022 2022/04/04     10.1002/mrm.29227
35698440 Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis from Magnetic Resonance (MR) Images Using a Deep Learning Model Tang X, Guo D, Liu A, Wu D, Liu J, Xu N, Qin Y. Med Sci Monit. 2022 Jun 14;28:e936733. doi: 10.12659/MSM.936733. Tang X Med Sci Monit 2022 2022/06/14 PMC9206408   10.12659/MSM.936733
36791514 Auto-segmentation of the tibia and femur from knee MR images via deep learning and its application to cartilage strain and recovery Kim-Wang SY, Bradley PX, Cutcliffe HC, Collins AT, Crook BS, Paranjape CS, Spritzer CE, DeFrate LE. J Biomech. 2023 Mar;149:111473. doi: 10.1016/j.jbiomech.2023.111473. Epub 2023 Jan 26. Kim-Wang SY J Biomech 2023 2023/02/15 PMC10281551 NIHMS1873960 10.1016/j.jbiomech.2023.111473
33897991 DL-MRI: A Unified Framework of Deep Learning-Based MRI Super Resolution Liu H, Liu J, Li J, Pan JS, Yu X. J Healthc Eng. 2021 Apr 9;2021:5594649. doi: 10.1155/2021/5594649. eCollection 2021. Liu H J Healthc Eng 2021 2021/04/26 PMC8052167   10.1155/2021/5594649
35727152 Role of Thigh Muscle Changes in Knee Osteoarthritis Outcomes: Osteoarthritis Initiative Data Mohajer B, Dolatshahi M, Moradi K, Najafzadeh N, Eng J, Zikria B, Wan M, Cao X, Roemer FW, Guermazi A, Demehri S. Radiology. 2022 Oct;305(1):169-178. doi: 10.1148/radiol.212771. Epub 2022 Jun 21. Mohajer B Radiology 2022 2022/06/21 PMC9524577   10.1148/radiol.212771
34496667 Open Source Software for Automatic Subregional Assessment of Knee Cartilage Degradation Using Quantitative T2 Relaxometry and Deep Learning Thomas KA, Krzemiński D, Kidziński Ł, Paul R, Rubin EB, Halilaj E, Black MS, Chaudhari A, Gold GE, Delp SL. Cartilage. 2021 Dec;13(1_suppl):747S-756S. doi: 10.1177/19476035211042406. Epub 2021 Sep 8. Thomas KA Cartilage 2021 2021/09/09 PMC8808775   10.1177/19476035211042406
33973737 Subchondral Bone Length in Knee Osteoarthritis: A Deep Learning-Derived Imaging Measure and Its Association With Radiographic and Clinical Outcomes Chang GH, Park LK, Le NA, Jhun RS, Surendran T, Lai J, Seo H, Promchotichai N, Yoon G, Scalera J, Capellini TD, Felson DT, Kolachalama VB. Arthritis Rheumatol. 2021 Dec;73(12):2240-2248. doi: 10.1002/art.41808. Epub 2021 Oct 29. Chang GH Arthritis Rheumatol 2021 2021/05/11 PMC8581065 NIHMS1703971 10.1002/art.41808
36044484 One-Dimensional Deep Low-Rank and Sparse Network for Accelerated MRI Wang Z, Qian C, Guo D, Sun H, Li R, Zhao B, Qu X. IEEE Trans Med Imaging. 2023 Jan;42(1):79-90. doi: 10.1109/TMI.2022.3203312. Epub 2022 Dec 29. Wang Z IEEE Trans Med Imaging 2023 2022/08/31     10.1109/TMI.2022.3203312
35870296 Deep learning solution for medical image localization and orientation detection Zhao Y, Zeng K, Zhao Y, Bhatia P, Ranganath M, Kozhikkavil ML, Li C, Hermosillo G. Med Image Anal. 2022 Oct;81:102529. doi: 10.1016/j.media.2022.102529. Epub 2022 Jul 6. Zhao Y Med Image Anal 2022 2022/07/23     10.1016/j.media.2022.102529
35795003 Alternating Learning Approach for Variational Networks and Undersampling Pattern in Parallel MRI Applications Zibetti MVW, Knoll F, Regatte RR. IEEE Trans Comput Imaging. 2022;8:449-461. doi: 10.1109/tci.2022.3176129. Epub 2022 May 20. Zibetti MVW IEEE Trans Comput Imaging 2022 2022/07/07 PMC9252023 NIHMS1815214 10.1109/tci.2022.3176129
29582464 Super-resolution musculoskeletal MRI using deep learning Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, Lee JH, Gold GE, Hargreaves BA. Magn Reson Med. 2018 Nov;80(5):2139-2154. doi: 10.1002/mrm.27178. Epub 2018 Mar 26. Chaudhari AS Magn Reson Med 2018 2018/03/28 PMC6107420 NIHMS949716 10.1002/mrm.27178
36564952 Editorial for "Deep-Learning-Based Contrast Synthesis From MRF Parameter Maps in the Knee Joint" Singh A. J Magn Reson Imaging. 2023 Aug;58(2):569-570. doi: 10.1002/jmri.28575. Epub 2022 Dec 23. Singh A J Magn Reson Imaging 2023 2022/12/24     10.1002/jmri.28575
36562500 Deep-Learning-Based Contrast Synthesis From MRF Parameter Maps in the Knee Joint Nykänen O, Nevalainen M, Casula V, Isosalo A, Inkinen SI, Nikki M, Lattanzi R, Cloos MA, Nissi MJ, Nieminen MT. J Magn Reson Imaging. 2023 Aug;58(2):559-568. doi: 10.1002/jmri.28573. Epub 2022 Dec 23. Nykänen O J Magn Reson Imaging 2023 2022/12/23 PMC10287835 NIHMS1856970 10.1002/jmri.28573
34035386 Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis Namiri NK, Lee J, Astuto B, Liu F, Shah R, Majumdar S, Pedoia V. Sci Rep. 2021 May 25;11(1):10915. doi: 10.1038/s41598-021-90292-6. Namiri NK Sci Rep 2021 2021/05/26 PMC8149826   10.1038/s41598-021-90292-6
34138986 Putting the Pieces Together: Deep Learning for Knee MRI Multitissue Abnormality Detection and Severity Grading D Li M, Y Chang C. Radiol Artif Intell. 2021 Apr 14;3(3):e210022. doi: 10.1148/ryai.2021210022. eCollection 2021 May. D Li M Radiol Artif Intell 2021 2021/06/17 PMC8204128   10.1148/ryai.2021210022
35792956 Ensemble deep learning model for predicting anterior cruciate ligament tear from lateral knee radiograph Kim DH, Chai JW, Kang JH, Lee JH, Kim HJ, Seo J, Choi JW. Skeletal Radiol. 2022 Dec;51(12):2269-2279. doi: 10.1007/s00256-022-04081-x. Epub 2022 Jun 9. Kim DH Skeletal Radiol 2022 2022/07/06     10.1007/s00256-022-04081-x
31804183 Age Assessment of Youth and Young Adults Using Magnetic Resonance Imaging of the Knee: A Deep Learning Approach Dallora AL, Berglund JS, Brogren M, Kvist O, Diaz Ruiz S, Dübbel A, Anderberg P. JMIR Med Inform. 2019 Dec 5;7(4):e16291. doi: 10.2196/16291. Dallora AL JMIR Med Inform 2019 2019/12/06 PMC6923761   10.2196/16291
36624404 Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study Akai H, Yasaka K, Sugawara H, Tajima T, Kamitani M, Furuta T, Akahane M, Yoshioka N, Ohtomo K, Abe O, Kiryu S. BMC Med Imaging. 2023 Jan 9;23(1):5. doi: 10.1186/s12880-023-00962-2. Akai H BMC Med Imaging 2023 2023/01/09 PMC9827641   10.1186/s12880-023-00962-2
35752117 Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI Khan S, Azam B, Yao Y, Chen W. Comput Methods Programs Biomed. 2022 Jul;222:106963. doi: 10.1016/j.cmpb.2022.106963. Epub 2022 Jun 17. Khan S Comput Methods Programs Biomed 2022 2022/06/25     10.1016/j.cmpb.2022.106963
34003757 Interpretable and Lightweight 3-D Deep Learning Model for Automated ACL Diagnosis Jeon Y, Yoshino K, Hagiwara S, Watanabe A, Quek ST, Yoshioka H, Feng M. IEEE J Biomed Health Inform. 2021 Jul;25(7):2388-2397. doi: 10.1109/JBHI.2021.3081355. Epub 2021 Jul 27. Jeon Y IEEE J Biomed Health Inform 2021 2021/05/18     10.1109/JBHI.2021.3081355
34441418 Feasibility and Implementation of a Deep Learning MR Reconstruction for TSE Sequences in Musculoskeletal Imaging Herrmann J, Koerzdoerfer G, Nickel D, Mostapha M, Nadar M, Gassenmaier S, Kuestner T, Othman AE. Diagnostics (Basel). 2021 Aug 16;11(8):1484. doi: 10.3390/diagnostics11081484. Herrmann J Diagnostics (Basel) 2021 2021/08/27 PMC8394583   10.3390/diagnostics11081484
36372871 Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN Li YZ, Wang Y, Fang KB, Zheng HZ, Lai QQ, Xia YF, Chen JY, Dai ZS. Eur J Med Res. 2022 Nov 14;27(1):247. doi: 10.1186/s40001-022-00883-w. Li YZ Eur J Med Res 2022 2022/11/14 PMC9661774   10.1186/s40001-022-00883-w
35669917 Knee Bone and Cartilage Segmentation Based on a 3D Deep Neural Network Using Adversarial Loss for Prior Shape Constraint Chen H, Zhao N, Tan T, Kang Y, Sun C, Xie G, Verdonschot N, Sprengers A. Front Med (Lausanne). 2022 May 20;9:792900. doi: 10.3389/fmed.2022.792900. eCollection 2022. Chen H Front Med (Lausanne) 2022 2022/06/07 PMC9163741   10.3389/fmed.2022.792900
37122858 Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative Yeoh PSQ, Lai KW, Goh SL, Hasikin K, Wu X, Li P. Front Bioeng Biotechnol. 2023 Apr 13;11:1164655. doi: 10.3389/fbioe.2023.1164655. eCollection 2023. Yeoh PSQ Front Bioeng Biotechnol 2023 2023/05/01 PMC10136763   10.3389/fbioe.2023.1164655
32793889 Deep Learning for Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries from MRI Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva F, Link TM, Pedoia V, Majumdar S. Radiol Artif Intell. 2020 Jul 29;2(4):e190207. doi: 10.1148/ryai.2020190207. Namiri NK Radiol Artif Intell 2020 2020/08/15 PMC7392061   10.1148/ryai.2020190207
35620201 Automated Detection Model Based on Deep Learning for Knee Joint Motion Injury due to Martial Arts Xue M, Liu Y, Cai X. Comput Math Methods Med. 2022 May 17;2022:3647152. doi: 10.1155/2022/3647152. eCollection 2022. Xue M Comput Math Methods Med 2022 2022/05/27 PMC9129942   10.1155/2022/3647152
32168039 Deep Convolutional Neural Network-Based Diagnosis of Anterior Cruciate Ligament Tears: Performance Comparison of Homogenous Versus Heterogeneous Knee MRI Cohorts With Different Pulse Sequence Protocols and 1.5-T and 3-T Magnetic Field Strengths Germann C, Marbach G, Civardi F, Fucentese SF, Fritz J, Sutter R, Pfirrmann CWA, Fritz B. Invest Radiol. 2020 Aug;55(8):499-506. doi: 10.1097/RLI.0000000000000664. Germann C Invest Radiol 2020 2020/03/14 PMC7343178   10.1097/RLI.0000000000000664
30063195 Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, Lian K, Kambhampati S, Kijowski R. Radiology. 2018 Oct;289(1):160-169. doi: 10.1148/radiol.2018172986. Epub 2018 Jul 31. Liu F Radiology 2018 2018/08/01 PMC6166867 NIHMS1001567 10.1148/radiol.2018172986
31793071 Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks Gaj S, Yang M, Nakamura K, Li X. Magn Reson Med. 2020 Jul;84(1):437-449. doi: 10.1002/mrm.28111. Epub 2019 Dec 2. Gaj S Magn Reson Med 2020 2019/12/04     10.1002/mrm.28111
32286452 Deep Learning Predicts Total Knee Replacement from Magnetic Resonance Images Tolpadi AA, Lee JJ, Pedoia V, Majumdar S. Sci Rep. 2020 Apr 14;10(1):6371. doi: 10.1038/s41598-020-63395-9. Tolpadi AA Sci Rep 2020 2020/04/15 PMC7156761   10.1038/s41598-020-63395-9
35178233 A Torn ACL Mapping in Knee MRI Images Using Deep Convolution Neural Network with Inception-v3 Sridhar S, Amutharaj J, Valsalan P, Arthi B, Ramkumar S, Mathupriya S, Rajendran T, Waji YA. J Healthc Eng. 2022 Feb 8;2022:7872500. doi: 10.1155/2022/7872500. eCollection 2022. Sridhar S J Healthc Eng 2022 2022/02/18 PMC8846973   10.1155/2022/7872500
32593389 A review on segmentation of knee articular cartilage: from conventional methods towards deep learning Ebrahimkhani S, Jaward MH, Cicuttini FM, Dharmaratne A, Wang Y, de Herrera AGS. Artif Intell Med. 2020 Jun;106:101851. doi: 10.1016/j.artmed.2020.101851. Epub 2020 May 6. Ebrahimkhani S Artif Intell Med 2020 2020/06/29     10.1016/j.artmed.2020.101851
33350717 A Deep Learning System for Synthetic Knee Magnetic Resonance Imaging: Is Artificial Intelligence-Based Fat-Suppressed Imaging Feasible? Fayad LM, Parekh VS, de Castro Luna R, Ko CC, Tank D, Fritz J, Ahlawat S, Jacobs MA. Invest Radiol. 2021 Jun 1;56(6):357-368. doi: 10.1097/RLI.0000000000000751. Fayad LM Invest Radiol 2021 2020/12/22 PMC8087629 NIHMS1644518 10.1097/RLI.0000000000000751
36016997 Automated detection of knee cystic lesions on magnetic resonance imaging using deep learning Xiongfeng T, Yingzhi L, Xianyue S, Meng H, Bo C, Deming G, Yanguo Q. Front Med (Lausanne). 2022 Aug 9;9:928642. doi: 10.3389/fmed.2022.928642. eCollection 2022. Xiongfeng T Front Med (Lausanne) 2022 2022/08/26 PMC9397605   10.3389/fmed.2022.928642
33724507 Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications Cole E, Cheng J, Pauly J, Vasanawala S. Magn Reson Med. 2021 Aug;86(2):1093-1109. doi: 10.1002/mrm.28733. Epub 2021 Mar 16. Cole E Magn Reson Med 2021 2021/03/16 PMC8291740 NIHMS1669248 10.1002/mrm.28733
35502381 Automated knee cartilage segmentation for heterogeneous clinical MRI using generative adversarial networks with transfer learning Yang M, Colak C, Chundru KK, Gaj S, Nanavati A, Jones MH, Winalski CS, Subhas N, Li X. Quant Imaging Med Surg. 2022 May;12(5):2620-2633. doi: 10.21037/qims-21-459. Yang M Quant Imaging Med Surg 2022 2022/05/03 PMC9014147   10.21037/qims-21-459
35847603 Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model Li J, Qian K, Liu J, Huang Z, Zhang Y, Zhao G, Wang H, Li M, Liang X, Zhou F, Yu X, Li L, Wang X, Yang X, Jiang Q. J Orthop Translat. 2022 Jun 26;34:91-101. doi: 10.1016/j.jot.2022.05.006. eCollection 2022 May. Li J J Orthop Translat 2022 2022/07/18 PMC9253363   10.1016/j.jot.2022.05.006
31872357 Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain Kemnitz J, Baumgartner CF, Eckstein F, Chaudhari A, Ruhdorfer A, Wirth W, Eder SK, Konukoglu E. MAGMA. 2020 Aug;33(4):483-493. doi: 10.1007/s10334-019-00816-5. Epub 2019 Dec 23. Kemnitz J MAGMA 2020 2019/12/25 PMC7351818   10.1007/s10334-019-00816-5
35811127 Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study Akai H, Yasaka K, Sugawara H, Tajima T, Akahane M, Yoshioka N, Ohtomo K, Abe O, Kiryu S. Magn Reson Med Sci. 2023 Jul 1;22(3):353-360. doi: 10.2463/mrms.mp.2022-0020. Epub 2022 Jul 9. Akai H Magn Reson Med Sci 2023 2022/07/10 PMC10449552   10.2463/mrms.mp.2022-0020
36527935 A Joint Group Sparsity-based deep learning for multi-contrast MRI reconstruction Guo D, Zeng G, Fu H, Wang Z, Yang Y, Qu X. J Magn Reson. 2023 Jan;346:107354. doi: 10.1016/j.jmr.2022.107354. Epub 2022 Dec 8. Guo D J Magn Reson 2023 2022/12/17     10.1016/j.jmr.2022.107354
37547408 MGACA-Net: a novel deep learning based multi-scale guided attention and context aggregation for localization of knee anterior cruciate ligament tears region in MRI images Awan MJ, Mohd Rahim MS, Salim N, Nobanee H, Asif AA, Attiq MO. PeerJ Comput Sci. 2023 Jul 13;9:e1483. doi: 10.7717/peerj-cs.1483. eCollection 2023. Awan MJ PeerJ Comput Sci 2023 2023/08/07 PMC10403161   10.7717/peerj-cs.1483
35759870 Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency Huo J, Ouyang X, Si L, Xuan K, Wang S, Yao W, Liu Y, Xu J, Qian D, Xue Z, Wang Q, Shen D, Zhang L. Med Image Anal. 2022 Aug;80:102508. doi: 10.1016/j.media.2022.102508. Epub 2022 Jun 18. Huo J Med Image Anal 2022 2022/06/27     10.1016/j.media.2022.102508
34926416 A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database Tack A, Shestakov A, Lüdke D, Zachow S. Front Bioeng Biotechnol. 2021 Dec 2;9:747217. doi: 10.3389/fbioe.2021.747217. eCollection 2021. Tack A Front Bioeng Biotechnol 2021 2021/12/20 PMC8675251   10.3389/fbioe.2021.747217
35678739 Simultaneously optimizing sampling pattern for joint acceleration of multi-contrast MRI using model-based deep learning Seo S, Luu HM, Choi SH, Park SH. Med Phys. 2022 Sep;49(9):5964-5980. doi: 10.1002/mp.15790. Epub 2022 Jun 20. Seo S Med Phys 2022 2022/06/09     10.1002/mp.15790
24579147 Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):246-53. doi: 10.1007/978-3-642-40763-5_31. Prasoon A Med Image Comput Comput Assist Interv 2013 2014/03/01     10.1007/978-3-642-40763-5_31
28670152 Deep Learning in Medical Imaging: General Overview Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N. Korean J Radiol. 2017 Jul-Aug;18(4):570-584. doi: 10.3348/kjr.2017.18.4.570. Epub 2017 May 19. Lee JG Korean J Radiol 2017 2017/07/04 PMC5447633   10.3348/kjr.2017.18.4.570
31958580 Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks Burton W 2nd, Myers C, Rullkoetter P. Comput Methods Programs Biomed. 2020 Jun;189:105328. doi: 10.1016/j.cmpb.2020.105328. Epub 2020 Jan 11. Burton W 2nd Comput Methods Programs Biomed 2020 2020/01/21     10.1016/j.cmpb.2020.105328
33440798 Efficient Detection of Knee Anterior Cruciate Ligament from Magnetic Resonance Imaging Using Deep Learning Approach Awan MJ, Rahim MSM, Salim N, Mohammed MA, Garcia-Zapirain B, Abdulkareem KH. Diagnostics (Basel). 2021 Jan 11;11(1):105. doi: 10.3390/diagnostics11010105. Awan MJ Diagnostics (Basel) 2021 2021/01/14 PMC7826961   10.3390/diagnostics11010105
31582263 Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning Qiu D, Zhang S, Liu Y, Zhu J, Zheng L. Comput Methods Programs Biomed. 2020 Apr;187:105059. doi: 10.1016/j.cmpb.2019.105059. Epub 2019 Sep 24. Qiu D Comput Methods Programs Biomed 2020 2019/10/05     10.1016/j.cmpb.2019.105059
30273968 Translation of morphological and functional musculoskeletal imaging Pedoia V, Majumdar S. J Orthop Res. 2019 Jan;37(1):23-34. doi: 10.1002/jor.24151. Epub 2018 Oct 29. Pedoia V J Orthop Res 2019 2018/10/02     10.1002/jor.24151
34735607 AI MSK clinical applications: cartilage and osteoarthritis Joseph GB, McCulloch CE, Sohn JH, Pedoia V, Majumdar S, Link TM. Skeletal Radiol. 2022 Feb;51(2):331-343. doi: 10.1007/s00256-021-03909-2. Epub 2021 Nov 4. Joseph GB Skeletal Radiol 2022 2021/11/04     10.1007/s00256-021-03909-2
32992372 Improving Quantitative Magnetic Resonance Imaging Using Deep Learning Liu F. Semin Musculoskelet Radiol. 2020 Aug;24(4):451-459. doi: 10.1055/s-0040-1709482. Epub 2020 Sep 29. Liu F Semin Musculoskelet Radiol 2020 2020/09/29 PMC8164439 NIHMS1700390 10.1055/s-0040-1709482
31535731 Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning Byra M, Wu M, Zhang X, Jang H, Ma YJ, Chang EY, Shah S, Du J. Magn Reson Med. 2020 Mar;83(3):1109-1122. doi: 10.1002/mrm.27969. Epub 2019 Sep 19. Byra M Magn Reson Med 2020 2019/09/20 PMC6879791 NIHMS1045869 10.1002/mrm.27969
31621571 Magnetic resonance imaging assessment of knee osteoarthritis: current and developing new concepts and techniques Hayashi D, Roemer FW, Guermazi A. Clin Exp Rheumatol. 2019 Sep-Oct;37 Suppl 120(5):88-95. Epub 2019 Oct 15. Hayashi D Clin Exp Rheumatol 2019 2019/10/18      
36564430 Region of interest-specific loss functions improve T(2) quantification with ultrafast T(2) mapping MRI sequences in knee, hip and lumbar spine Tolpadi AA, Han M, Calivà F, Pedoia V, Majumdar S. Sci Rep. 2022 Dec 23;12(1):22208. doi: 10.1038/s41598-022-26266-z. Tolpadi AA Sci Rep 2022 2022/12/23 PMC9789075   10.1038/s41598-022-26266-z
32076658 Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning Liu F, Guan B, Zhou Z, Samsonov A, Rosas H, Lian K, Sharma R, Kanarek A, Kim J, Guermazi A, Kijowski R. Radiol Artif Intell. 2019 May 8;1(3):180091. doi: 10.1148/ryai.2019180091. Liu F Radiol Artif Intell 2019 2020/02/21 PMC6542618   10.1148/ryai.2019180091
35524293 Automatic segmentation model of intercondylar fossa based on deep learning: a novel and effective assessment method for the notch volume Li M, Bai H, Zhang F, Zhou Y, Lin Q, Zhou Q, Feng Q, Zhang L. BMC Musculoskelet Disord. 2022 May 6;23(1):426. doi: 10.1186/s12891-022-05378-7. Li M BMC Musculoskelet Disord 2022 2022/05/07 PMC9074347   10.1186/s12891-022-05378-7
33634142 Knee Cartilage Thickness Differs Alongside Ages: A 3-T Magnetic Resonance Research Upon 2,481 Subjects via Deep Learning Si L, Xuan K, Zhong J, Huo J, Xing Y, Geng J, Hu Y, Zhang H, Wang Q, Yao W. Front Med (Lausanne). 2021 Feb 9;7:600049. doi: 10.3389/fmed.2020.600049. eCollection 2020. Si L Front Med (Lausanne) 2021 2021/02/26 PMC7900571   10.3389/fmed.2020.600049
36793660 Prediction Models for Knee Osteoarthritis: Review of Current Models and Future Directions Ramazanian T, Fu S, Sohn S, Taunton MJ, Kremers HM. Arch Bone Jt Surg. 2023;11(1):1-11. doi: 10.22038/ABJS.2022.58485.2897. Ramazanian T Arch Bone Jt Surg 2023 2023/02/16 PMC9903309   10.22038/ABJS.2022.58485.2897
36243308 The KNee OsteoArthritis Prediction (KNOAP2020) challenge: An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images Hirvasniemi J, Runhaar J, van der Heijden RA, Zokaeinikoo M, Yang M, Li X, Tan J, Rajamohan HR, Zhou Y, Deniz CM, Caliva F, Iriondo C, Lee JJ, Liu F, Martinez AM, Namiri N, Pedoia V, Panfilov E, Bayramoglu N, Nguyen HH, Nieminen MT, Saarakkala S, Tiulpin A, Lin E, Li A, Li V, Dam EB, Chaudhari AS, Kijowski R, Bierma-Zeinstra S, Oei EHG, Klein S. Osteoarthritis Cartilage. 2023 Jan;31(1):115-125. doi: 10.1016/j.joca.2022.10.001. Epub 2022 Oct 12. Hirvasniemi J Osteoarthritis Cartilage 2023 2022/10/15 PMC10323696 NIHMS1905689 10.1016/j.joca.2022.10.001
34087612 A deep cascade of ensemble of dual domain networks with gradient-based T1 assistance and perceptual refinement for fast MRI reconstruction Murugesan B, Ramanarayanan S, Vijayarangan S, Ram K, Jagannathan NR, Sivaprakasam M. Comput Med Imaging Graph. 2021 Jul;91:101942. doi: 10.1016/j.compmedimag.2021.101942. Epub 2021 May 24. Murugesan B Comput Med Imaging Graph 2021 2021/06/04     10.1016/j.compmedimag.2021.101942
36204533 RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning Mei X, Liu Z, Robson PM, Marinelli B, Huang M, Doshi A, Jacobi A, Cao C, Link KE, Yang T, Wang Y, Greenspan H, Deyer T, Fayad ZA, Yang Y. Radiol Artif Intell. 2022 Jul 27;4(5):e210315. doi: 10.1148/ryai.210315. eCollection 2022 Sep. Mei X Radiol Artif Intell 2022 2022/10/07 PMC9530758   10.1148/ryai.210315
34938819 Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis of Intra- and Extra-articular Hip Impingement Zeng G, Degonda C, Boschung A, Schmaranzer F, Gerber N, Siebenrock KA, Steppacher SD, Tannast M, Lerch TD. Orthop J Sports Med. 2021 Nov 24;9(12):23259671211046916. doi: 10.1177/23259671211046916. eCollection 2021 Dec. Zeng G Orthop J Sports Med 2021 2021/12/23 PMC8685729   10.1177/23259671211046916
32162395 Fully automated and robust analysis technique for popliteal artery vessel wall evaluation (FRAPPE) using neural network models from standardized knee MRI Chen L, Canton G, Liu W, Hippe DS, Balu N, Watase H, Hatsukami TS, Waterton JC, Hwang JN, Yuan C. Magn Reson Med. 2020 Oct;84(4):2147-2160. doi: 10.1002/mrm.28237. Epub 2020 Mar 11. Chen L Magn Reson Med 2020 2020/03/13 PMC8320767 NIHMS1570342 10.1002/mrm.28237
32956045 Uncertainty Quantification in Deep MRI Reconstruction Edupuganti V, Mardani M, Vasanawala S, Pauly J. IEEE Trans Med Imaging. 2021 Jan;40(1):239-250. doi: 10.1109/TMI.2020.3025065. Epub 2020 Dec 29. Edupuganti V IEEE Trans Med Imaging 2021 2020/09/21 PMC7837266 NIHMS1658436 10.1109/TMI.2020.3025065
34918423 Cross-Cohort Automatic Knee MRI Segmentation With Multi-Planar U-Nets Perslev M, Pai A, Runhaar J, Igel C, Dam EB. J Magn Reson Imaging. 2022 Jun;55(6):1650-1663. doi: 10.1002/jmri.27978. Epub 2021 Dec 17. Perslev M J Magn Reson Imaging 2022 2021/12/17 PMC9106804 NIHMS1750740 10.1002/jmri.27978
36126403 KCB-Net: A 3D knee cartilage and bone segmentation network via sparse annotation Peng Y, Zheng H, Liang P, Zhang L, Zaman F, Wu X, Sonka M, Chen DZ. Med Image Anal. 2022 Nov;82:102574. doi: 10.1016/j.media.2022.102574. Epub 2022 Sep 7. Peng Y Med Image Anal 2022 2022/09/20     10.1016/j.media.2022.102574
30905742 Diagnosing osteoarthritis from T(2) maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Osteoarthritis Cartilage. 2019 Jul;27(7):1002-1010. doi: 10.1016/j.joca.2019.02.800. Epub 2019 Mar 21. Pedoia V Osteoarthritis Cartilage 2019 2019/03/26 PMC6579664 NIHMS1525123 10.1016/j.joca.2019.02.800
35059693 Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization Arvinte M, Vishwanath S, Tewfik AH, Tamir JI. Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12906:350-360. doi: 10.1007/978-3-030-87231-1_34. Epub 2021 Sep 21. Arvinte M Med Image Comput Comput Assist Interv 2021 2022/01/21 PMC8767765 NIHMS1765492 10.1007/978-3-030-87231-1_34
34062366 Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction Lv J, Li G, Tong X, Chen W, Huang J, Wang C, Yang G. Comput Biol Med. 2021 Jul;134:104504. doi: 10.1016/j.compbiomed.2021.104504. Epub 2021 May 26. Lv J Comput Biol Med 2021 2021/06/01     10.1016/j.compbiomed.2021.104504
32759045 pFISTA-SENSE-ResNet for parallel MRI reconstruction Lu T, Zhang X, Huang Y, Guo D, Huang F, Xu Q, Hu Y, Ou-Yang L, Lin J, Yan Z, Qu X. J Magn Reson. 2020 Sep;318:106790. doi: 10.1016/j.jmr.2020.106790. Epub 2020 Jul 21. Lu T J Magn Reson 2020 2020/08/08     10.1016/j.jmr.2020.106790
30859341 Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear Chang PD, Wong TT, Rasiej MJ. J Digit Imaging. 2019 Dec;32(6):980-986. doi: 10.1007/s10278-019-00193-4. Chang PD J Digit Imaging 2019 2019/03/13 PMC6841825   10.1007/s10278-019-00193-4
34306588 Deep Learning-Based Magnetic Resonance Imaging Image Features for Diagnosis of Anterior Cruciate Ligament Injury Li Z, Ren S, Zhou R, Jiang X, You T, Li C, Zhang W. J Healthc Eng. 2021 Jul 2;2021:4076175. doi: 10.1155/2021/4076175. eCollection 2021. Li Z J Healthc Eng 2021 2021/07/26 PMC8272672   10.1155/2021/4076175
36092783 Detection Method of Athlete Joint Injury Based on Deep Learning Model Liu J, Yang X, Liao T, Huang Y. Comput Math Methods Med. 2022 Sep 2;2022:8165580. doi: 10.1155/2022/8165580. eCollection 2022. Liu J Comput Math Methods Med 2022 2022/09/12 PMC9462975   10.1155/2022/8165580
34151253 Evaluation of MRI Denoising Methods Using Unsupervised Learning Moreno López M, Frederick JM, Ventura J. Front Artif Intell. 2021 Jun 4;4:642731. doi: 10.3389/frai.2021.642731. eCollection 2021. Moreno López M Front Artif Intell 2021 2021/06/21 PMC8212039   10.3389/frai.2021.642731
34892119 MRI Knee Domain Translation for Unsupervised Segmentation By CycleGAN (data from Osteoarthritis initiative (OAI)) Felfeliyan B, Hareendranathan A, Kuntze G, Jaremko J, Ronsky J. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4052-4055. doi: 10.1109/EMBC46164.2021.9629705. Felfeliyan B Annu Int Conf IEEE Eng Med Biol Soc 2021 2021/12/11     10.1109/EMBC46164.2021.9629705
35192462 Pyramid Convolutional RNN for MRI Image Reconstruction Chen EZ, Wang P, Chen X, Chen T, Sun S. IEEE Trans Med Imaging. 2022 Aug;41(8):2033-2047. doi: 10.1109/TMI.2022.3153849. Epub 2022 Aug 1. Chen EZ IEEE Trans Med Imaging 2022 2022/02/22     10.1109/TMI.2022.3153849
35383186 fastMRI+, Clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data Zhao R, Yaman B, Zhang Y, Stewart R, Dixon A, Knoll F, Huang Z, Lui YW, Hansen MS, Lungren MP. Sci Data. 2022 Apr 5;9(1):152. doi: 10.1038/s41597-022-01255-z. Zhao R Sci Data 2022 2022/04/06 PMC8983757   10.1038/s41597-022-01255-z
29115689 Learning a variational network for reconstruction of accelerated MRI data Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F. Magn Reson Med. 2018 Jun;79(6):3055-3071. doi: 10.1002/mrm.26977. Epub 2017 Nov 8. Hammernik K Magn Reson Med 2018 2017/11/09 PMC5902683 NIHMS928633 10.1002/mrm.26977
36716684 DSMENet: Detail and Structure Mutually Enhancing Network for under-sampled MRI reconstruction Wang Y, Pang Y, Tong C. Comput Biol Med. 2023 Mar;154:106204. doi: 10.1016/j.compbiomed.2022.106204. Epub 2022 Oct 13. Wang Y Comput Biol Med 2023 2023/01/30     10.1016/j.compbiomed.2022.106204
35713187 Deep learning-based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data Hanspach J, Bollmann S, Grigo J, Karius A, Uder M, Laun FB. Magn Reson Med. 2022 Oct;88(4):1548-1560. doi: 10.1002/mrm.29265. Epub 2022 Jun 17. Hanspach J Magn Reson Med 2022 2022/06/17     10.1002/mrm.29265
33231896 Robust water-fat separation based on deep learning model exploring multi-echo nature of mGRE Liu K, Li X, Li Z, Chen Y, Xiong H, Chen F, Bao Q, Liu C. Magn Reson Med. 2021 May;85(5):2828-2841. doi: 10.1002/mrm.28586. Epub 2020 Nov 24. Liu K Magn Reson Med 2021 2020/11/24     10.1002/mrm.28586
36651242 [Deep parallel MRI reconstruction based on a complex-valued loss function] Huang J, Zhou G, Yu Z, Hu W. Nan Fang Yi Ke Da Xue Xue Bao. 2022 Dec 20;42(12):1755-1764. doi: 10.12122/j.issn.1673-4254.2022.12.02. Huang J Nan Fang Yi Ke Da Xue Xue Bao 2022 2023/01/18 PMC9878414   10.12122/j.issn.1673-4254.2022.12.02
31732262 MR Protocol Optimization With Deep Learning: A Proof of Concept Richardson ML. Curr Probl Diagn Radiol. 2021 Mar-Apr;50(2):168-174. doi: 10.1067/j.cpradiol.2019.10.004. Epub 2019 Oct 21. Richardson ML Curr Probl Diagn Radiol 2021 2019/11/17     10.1067/j.cpradiol.2019.10.004
30529224 Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative Ambellan F, Tack A, Ehlke M, Zachow S. Med Image Anal. 2019 Feb;52:109-118. doi: 10.1016/j.media.2018.11.009. Epub 2018 Nov 17. Ambellan F Med Image Anal 2019 2018/12/12     10.1016/j.media.2018.11.009
32879854 Diagnostic interchangeability of deep convolutional neural networks reconstructed knee MR images: preliminary experience Subhas N, Li H, Yang M, Winalski CS, Polster J, Obuchowski N, Mamoto K, Liu R, Zhang C, Huang P, Gaire SK, Liang D, Shen B, Li X, Ying L. Quant Imaging Med Surg. 2020 Sep;10(9):1748-1762. doi: 10.21037/qims-20-664. Subhas N Quant Imaging Med Surg 2020 2020/09/04 PMC7417759   10.21037/qims-20-664
36474467 Fast quantitative bone marrow lesion measurement on knee MRI for the assessment of osteoarthritis Preiswerk F, Sury MS, Wortman JR, Neumann G, Wells W, Duryea J. Osteoarthr Cartil Open. 2022 Jan 10;4(1):100234. doi: 10.1016/j.ocarto.2022.100234. eCollection 2022 Mar. Preiswerk F Osteoarthr Cartil Open 2022 2022/12/07 PMC9718203   10.1016/j.ocarto.2022.100234
35652115 MIMIR: Deep Regression for Automated Analysis of UK Biobank MRI Scans Langner T, Martínez Mora A, Strand R, Ahlström H, Kullberg J. Radiol Artif Intell. 2022 Apr 6;4(3):e210178. doi: 10.1148/ryai.210178. eCollection 2022 May. Langner T Radiol Artif Intell 2022 2022/06/02 PMC9152682   10.1148/ryai.210178
31373061 MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks Zhang Q, Ruan G, Yang W, Liu Y, Zhao K, Feng Q, Chen W, Wu EX, Feng Y. Magn Reson Med. 2019 Dec;82(6):2133-2145. doi: 10.1002/mrm.27894. Epub 2019 Aug 2. Zhang Q Magn Reson Med 2019 2019/08/03     10.1002/mrm.27894
29774597 Assessment of the generalization of learned image reconstruction and the potential for transfer learning Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Magn Reson Med. 2019 Jan;81(1):116-128. doi: 10.1002/mrm.27355. Epub 2018 May 17. Knoll F Magn Reson Med 2019 2018/05/19 PMC6240410 NIHMS962219 10.1002/mrm.27355
28733975 Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Magn Reson Med. 2018 Apr;79(4):2379-2391. doi: 10.1002/mrm.26841. Epub 2017 Jul 21. Liu F Magn Reson Med 2018 2017/07/23 PMC6271435 NIHMS996920 10.1002/mrm.26841
32055951 Assessment of knee pain from MR imaging using a convolutional Siamese network Chang GH, Felson DT, Qiu S, Guermazi A, Capellini TD, Kolachalama VB. Eur Radiol. 2020 Jun;30(6):3538-3548. doi: 10.1007/s00330-020-06658-3. Epub 2020 Feb 13. Chang GH Eur Radiol 2020 2020/02/15 PMC7786238 NIHMS1561607 10.1007/s00330-020-06658-3
35214451 Automated Knee MR Images Segmentation of Anterior Cruciate Ligament Tears Awan MJ, Rahim MSM, Salim N, Rehman A, Garcia-Zapirain B. Sensors (Basel). 2022 Feb 17;22(4):1552. doi: 10.3390/s22041552. Awan MJ Sensors (Basel) 2022 2022/02/26 PMC8876207   10.3390/s22041552
36446308 Deep convolutional feature details for better knee disorder diagnoses in magnetic resonance images Dunnhofer M, Martinel N, Micheloni C. Comput Med Imaging Graph. 2022 Dec;102:102142. doi: 10.1016/j.compmedimag.2022.102142. Epub 2022 Nov 21. Dunnhofer M Comput Med Imaging Graph 2022 2022/11/29     10.1016/j.compmedimag.2022.102142
36049450 CAN3D: Fast 3D medical image segmentation via compact context aggregation Dai W, Woo B, Liu S, Marques M, Engstrom C, Greer PB, Crozier S, Dowling JA, Chandra SS. Med Image Anal. 2022 Nov;82:102562. doi: 10.1016/j.media.2022.102562. Epub 2022 Aug 9. Dai W Med Image Anal 2022 2022/09/01     10.1016/j.media.2022.102562
32980503 High-performance rapid MR parameter mapping using model-based deep adversarial learning Liu F, Kijowski R, Feng L, El Fakhri G. Magn Reson Imaging. 2020 Dec;74:152-160. doi: 10.1016/j.mri.2020.09.021. Epub 2020 Sep 25. Liu F Magn Reson Imaging 2020 2020/09/27 PMC7669737 NIHMS1634937 10.1016/j.mri.2020.09.021
34611904 Partial Fourier reconstruction of complex MR images using complex-valued convolutional neural networks Xiao L, Liu Y, Yi Z, Zhao Y, Xie L, Cao P, Leong ATL, Wu EX. Magn Reson Med. 2022 Feb;87(2):999-1014. doi: 10.1002/mrm.29033. Epub 2021 Oct 5. Xiao L Magn Reson Med 2022 2021/10/06     10.1002/mrm.29033
30188817 Learning Cross-Modality Representations From Multi-Modal Images van Tulder G, de Bruijne M. IEEE Trans Med Imaging. 2019 Feb;38(2):638-648. doi: 10.1109/TMI.2018.2868977. Epub 2018 Sep 6. van Tulder G IEEE Trans Med Imaging 2019 2018/09/07     10.1109/TMI.2018.2868977
35789133 Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging Yaman B, Gu H, Hosseini SAH, Demirel OB, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. NMR Biomed. 2022 Dec;35(12):e4798. doi: 10.1002/nbm.4798. Epub 2022 Jul 17. Yaman B NMR Biomed 2022 2022/07/05 PMC9669191 NIHMS1821616 10.1002/nbm.4798
32038862 Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty Rodrigues P, Antunes M, Raposo C, Marques P, Fonseca F, Barreto JP. Healthc Technol Lett. 2019 Dec 6;6(6):226-230. doi: 10.1049/htl.2019.0078. eCollection 2019 Dec. Rodrigues P Healthc Technol Lett 2019 2020/02/11 PMC6952257   10.1049/htl.2019.0078
35426470 Improving high frequency image features of deep learning reconstructions via k-space refinement with null-space kernel Ryu K, Alkan C, Vasanawala SS. Magn Reson Med. 2022 Sep;88(3):1263-1272. doi: 10.1002/mrm.29261. Epub 2022 Apr 15. Ryu K Magn Reson Med 2022 2022/04/15 PMC9246879 NIHMS1791972 10.1002/mrm.29261
35172227 Surface spherical encoding and contrastive learning for virtual bone shape aging Calivá F, Kamat S, Morales Martinez A, Majumdar S, Pedoia V. Med Image Anal. 2022 Apr;77:102388. doi: 10.1016/j.media.2022.102388. Epub 2022 Feb 7. Calivá F Med Image Anal 2022 2022/02/16     10.1016/j.media.2022.102388
30703579 Recurrent inference machines for reconstructing heterogeneous MRI data Lønning K, Putzky P, Sonke JJ, Reneman L, Caan MWA, Welling M. Med Image Anal. 2019 Apr;53:64-78. doi: 10.1016/j.media.2019.01.005. Epub 2019 Jan 18. Lønning K Med Image Anal 2019 2019/02/01     10.1016/j.media.2019.01.005
34441318 TransMed: Transformers Advance Multi-Modal Medical Image Classification Dai Y, Gao Y, Liu F. Diagnostics (Basel). 2021 Jul 31;11(8):1384. doi: 10.3390/diagnostics11081384. Dai Y Diagnostics (Basel) 2021 2021/08/27 PMC8391808   10.3390/diagnostics11081384
32243657 Learning osteoarthritis imaging biomarkers from bone surface spherical encoding Morales Martinez A, Caliva F, Flament I, Liu F, Lee J, Cao P, Shah R, Majumdar S, Pedoia V. Magn Reson Med. 2020 Oct;84(4):2190-2203. doi: 10.1002/mrm.28251. Epub 2020 Apr 3. Morales Martinez A Magn Reson Med 2020 2020/04/04 PMC7329596 NIHMS1582357 10.1002/mrm.28251
37426615 Medical imaging in rheumatoid arthritis: A review on deep learning approach Parashar A, Rishi R, Parashar A, Rida I. Open Life Sci. 2023 Jul 6;18(1):20220611. doi: 10.1515/biol-2022-0611. eCollection 2023. Parashar A Open Life Sci 2023 2023/07/10 PMC10329279   10.1515/biol-2022-0611
34101071 Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative Gatti AA, Maly MR. MAGMA. 2021 Dec;34(6):859-875. doi: 10.1007/s10334-021-00934-z. Epub 2021 Jun 8. Gatti AA MAGMA 2021 2021/06/08     10.1007/s10334-021-00934-z
32715584 Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard Zhang L, Li M, Zhou Y, Lu G, Zhou Q. J Magn Reson Imaging. 2020 Dec;52(6):1745-1752. doi: 10.1002/jmri.27266. Epub 2020 Jul 26. Zhang L J Magn Reson Imaging 2020 2020/07/28     10.1002/jmri.27266
35107593 Automated segmentation of magnetic resonance bone marrow signal: a feasibility study von Brandis E, Jenssen HB, Avenarius DFM, Bjørnerud A, Flatø B, Tomterstad AH, Lilleby V, Rosendahl K, Sakinis T, Zadig PKK, Müller LO. Pediatr Radiol. 2022 May;52(6):1104-1114. doi: 10.1007/s00247-021-05270-x. Epub 2022 Feb 2. von Brandis E Pediatr Radiol 2022 2022/02/02 PMC9107442   10.1007/s00247-021-05270-x
36292003 Anterior Cruciate Ligament Tear Detection Based on Deep Convolutional Neural Network Joshi K, Suganthi K. Diagnostics (Basel). 2022 Sep 26;12(10):2314. doi: 10.3390/diagnostics12102314. Joshi K Diagnostics (Basel) 2022 2022/10/27 PMC9600338   10.3390/diagnostics12102314
30040634 Deep Generative Adversarial Neural Networks for Compressive Sensing MRI Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, Pauly JM. IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23. Mardani M IEEE Trans Med Imaging 2019 2018/07/25 PMC6542360 NIHMS1517794 10.1109/TMI.2018.2858752
23887984 Difficulty with learning of exercise instructions associated with 'working memory' dysfunction and frontal glucose hypometabolism in a patient with very mild subcortical vascular dementia with knee osteoarthritis Takeda K, Meguro K, Tanaka N, Nakatsuka M. BMJ Case Rep. 2013 Jul 25;2013:bcr2013008577. doi: 10.1136/bcr-2013-008577. Takeda K BMJ Case Rep 2013 2013/07/27 PMC3736114   10.1136/bcr-2013-008577
35637451 Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image Shin H, Choi GS, Shon OJ, Kim GB, Chang MC. BMC Musculoskelet Disord. 2022 May 30;23(1):510. doi: 10.1186/s12891-022-05468-6. Shin H BMC Musculoskelet Disord 2022 2022/05/31 PMC9150332   10.1186/s12891-022-05468-6
34110037 Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination Hammernik K, Schlemper J, Qin C, Duan J, Summers RM, Rueckert D. Magn Reson Med. 2021 Oct;86(4):1859-1872. doi: 10.1002/mrm.28827. Epub 2021 Jun 10. Hammernik K Magn Reson Med 2021 2021/06/10     10.1002/mrm.28827
35648374 Automatic Detection of Meniscus Tears Using Backbone Convolutional Neural Networks on Knee MRI Hung TNK, Vy VPT, Tri NM, Hoang LN, Tuan LV, Ho QT, Le NQK, Kang JH. J Magn Reson Imaging. 2023 Mar;57(3):740-749. doi: 10.1002/jmri.28284. Epub 2022 Jun 1. Hung TNK J Magn Reson Imaging 2023 2022/06/01     10.1002/jmri.28284
32614100 Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. Magn Reson Med. 2020 Dec;84(6):3172-3191. doi: 10.1002/mrm.28378. Epub 2020 Jul 2. Yaman B Magn Reson Med 2020 2020/07/03 PMC7811359 NIHMS1661354 10.1002/mrm.28378
36067702 A cascade of preconditioned conjugate gradient networks for accelerated magnetic resonance imaging Kim M, Chung W. Comput Methods Programs Biomed. 2022 Oct;225:107090. doi: 10.1016/j.cmpb.2022.107090. Epub 2022 Aug 29. Kim M Comput Methods Programs Biomed 2022 2022/09/06     10.1016/j.cmpb.2022.107090
31166049 SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction Liu F, Samsonov A, Chen L, Kijowski R, Feng L. Magn Reson Med. 2019 Nov;82(5):1890-1904. doi: 10.1002/mrm.27827. Epub 2019 Jun 5. Liu F Magn Reson Med 2019 2019/06/06 PMC6660404 NIHMS1028480 10.1002/mrm.27827
32755384 Diagnostic Accuracy of Quantitative Multicontrast 5-Minute Knee MRI Using Prospective Artificial Intelligence Image Quality Enhancement Chaudhari AS, Grissom MJ, Fang Z, Sveinsson B, Lee JH, Gold GE, Hargreaves BA, Stevens KJ. AJR Am J Roentgenol. 2021 Jun;216(6):1614-1625. doi: 10.2214/AJR.20.24172. Epub 2020 Aug 5. Chaudhari AS AJR Am J Roentgenol 2021 2020/08/07 PMC8862596 NIHMS1773740 10.2214/AJR.20.24172
35041598 NC-PDNet: A Density-Compensated Unrolled Network for 2D and 3D Non-Cartesian MRI Reconstruction Ramzi Z, G R C, Starck JL, Ciuciu P. IEEE Trans Med Imaging. 2022 Jul;41(7):1625-1638. doi: 10.1109/TMI.2022.3144619. Epub 2022 Jun 30. Ramzi Z IEEE Trans Med Imaging 2022 2022/01/18     10.1109/TMI.2022.3144619
35551485 Design and validation of a semi-automatic bone segmentation algorithm from MRI to improve research efficiency Heckelman LN, Soher BJ, Spritzer CE, Lewis BD, DeFrate LE. Sci Rep. 2022 May 12;12(1):7825. doi: 10.1038/s41598-022-11785-6. Heckelman LN Sci Rep 2022 2022/05/13 PMC9098419   10.1038/s41598-022-11785-6
31297614 Age Prediction Based on Brain MRI Image: A Survey Sajedi H, Pardakhti N. J Med Syst. 2019 Jul 11;43(8):279. doi: 10.1007/s10916-019-1401-7. Sajedi H J Med Syst 2019 2019/07/13     10.1007/s10916-019-1401-7
34968699 Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction Huang J, Wang S, Zhou G, Hu W, Yu G. Magn Reson Imaging. 2022 Apr;87:38-46. doi: 10.1016/j.mri.2021.12.003. Epub 2021 Dec 27. Huang J Magn Reson Imaging 2022 2021/12/30     10.1016/j.mri.2021.12.003
30536427 SUSAN: segment unannotated image structure using adversarial network Liu F. Magn Reson Med. 2019 May;81(5):3330-3345. doi: 10.1002/mrm.27627. Epub 2018 Dec 10. Liu F Magn Reson Med 2019 2018/12/12 PMC7140982 NIHMS1572885 10.1002/mrm.27627
33075675 The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs Kessler DA, MacKay JW, Crowe VA, Henson FMD, Graves MJ, Gilbert FJ, Kaggie JD. Comput Med Imaging Graph. 2020 Dec;86:101793. doi: 10.1016/j.compmedimag.2020.101793. Epub 2020 Sep 28. Kessler DA Comput Med Imaging Graph 2020 2020/10/19 PMC7721597   10.1016/j.compmedimag.2020.101793
33458865 A transfer learning approach for automatic segmentation of the surgically treated anterior cruciate ligament Flannery SW, Kiapour AM, Edgar DJ, Murray MM, Beveridge JE, Fleming BC. J Orthop Res. 2022 Jan;40(1):277-284. doi: 10.1002/jor.24984. Epub 2021 Jan 27. Flannery SW J Orthop Res 2022 2021/01/18 PMC8285460 NIHMS1664227 10.1002/jor.24984
34148167 MR-contrast-aware image-to-image translations with generative adversarial networks Denck J, Guehring J, Maier A, Rothgang E. Int J Comput Assist Radiol Surg. 2021 Dec;16(12):2069-2078. doi: 10.1007/s11548-021-02433-x. Epub 2021 Jun 20. Denck J Int J Comput Assist Radiol Surg 2021 2021/06/20 PMC8616894   10.1007/s11548-021-02433-x
37492386 uRP: An integrated research platform for one-stop analysis of medical images Wu J, Xia Y, Wang X, Wei Y, Liu A, Innanje A, Zheng M, Chen L, Shi J, Wang L, Zhan Y, Zhou XS, Xue Z, Shi F, Shen D. Front Radiol. 2023 Apr 18;3:1153784. doi: 10.3389/fradi.2023.1153784. eCollection 2023. Wu J Front Radiol 2023 2023/07/26 PMC10365282   10.3389/fradi.2023.1153784
36650496 Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol Kulseng CPS, Nainamalai V, Grøvik E, Geitung JT, Årøen A, Gjesdal KI. BMC Musculoskelet Disord. 2023 Jan 18;24(1):41. doi: 10.1186/s12891-023-06153-y. Kulseng CPS BMC Musculoskelet Disord 2023 2023/01/17 PMC9847207   10.1186/s12891-023-06153-y
33154515 Rapid mono and biexponential 3D-T(1ρ) mapping of knee cartilage using variational networks Zibetti MVW, Johnson PM, Sharafi A, Hammernik K, Knoll F, Regatte RR. Sci Rep. 2020 Nov 5;10(1):19144. doi: 10.1038/s41598-020-76126-x. Zibetti MVW Sci Rep 2020 2020/11/06 PMC7645759   10.1038/s41598-020-76126-x
36085911 DVS-Net: Dual-domain Variable Splitting Network for Accelerated Parallel MRI Data Ding R, Bartlett J, Duan J, Duan Y. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2219-2223. doi: 10.1109/EMBC48229.2022.9871425. Ding R Annu Int Conf IEEE Eng Med Biol Soc 2022 2022/09/10     10.1109/EMBC48229.2022.9871425
32882339 A multi-scale residual network for accelerated radial MR parameter mapping Fu Z, Mandava S, Keerthivasan MB, Li Z, Johnson K, Martin DR, Altbach MI, Bilgin A. Magn Reson Imaging. 2020 Nov;73:152-162. doi: 10.1016/j.mri.2020.08.013. Epub 2020 Sep 1. Fu Z Magn Reson Imaging 2020 2020/09/04 PMC7580302 NIHMS1626997 10.1016/j.mri.2020.08.013
29526784 Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative Tack A, Mukhopadhyay A, Zachow S. Osteoarthritis Cartilage. 2018 May;26(5):680-688. doi: 10.1016/j.joca.2018.02.907. Epub 2018 Mar 9. Tack A Osteoarthritis Cartilage 2018 2018/03/13     10.1016/j.joca.2018.02.907
35705930 Automated detection of anterior cruciate ligament tears using a deep convolutional neural network Minamoto Y, Akagi R, Maki S, Shiko Y, Tozawa R, Kimura S, Yamaguchi S, Kawasaki Y, Ohtori S, Sasho T. BMC Musculoskelet Disord. 2022 Jun 15;23(1):577. doi: 10.1186/s12891-022-05524-1. Minamoto Y BMC Musculoskelet Disord 2022 2022/06/15 PMC9199233   10.1186/s12891-022-05524-1
36573479 Democratization of deep learning for segmenting cartilage from MRIs of human knees: Application to data from the osteoarthritis initiative Rodriguez-Vila B, Gonzalez-Hospital V, Puertas E, Beunza JJ, Pierce DM. J Orthop Res. 2023 Aug;41(8):1754-1766. doi: 10.1002/jor.25509. Epub 2023 Jan 7. Rodriguez-Vila B J Orthop Res 2023 2022/12/27     10.1002/jor.25509
34753963 Uncovering associations between data-driven learned qMRI biomarkers and chronic pain Morales AG, Lee JJ, Caliva F, Iriondo C, Liu F, Majumdar S, Pedoia V. Sci Rep. 2021 Nov 9;11(1):21989. doi: 10.1038/s41598-021-01111-x. Morales AG Sci Rep 2021 2021/11/10 PMC8578418   10.1038/s41598-021-01111-x
30860285 MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping Liu F, Feng L, Kijowski R. Magn Reson Med. 2019 Jul;82(1):174-188. doi: 10.1002/mrm.27707. Epub 2019 Mar 12. Liu F Magn Reson Med 2019 2019/03/13 PMC7144418 NIHMS1566608 10.1002/mrm.27707
35494819 Multi-level pooling encoder-decoder convolution neural network for MRI reconstruction Karnjanapreechakorn S, Kusakunniran W, Siriapisith T, Saiviroonporn P. PeerJ Comput Sci. 2022 Mar 30;8:e934. doi: 10.7717/peerj-cs.934. eCollection 2022. Karnjanapreechakorn S PeerJ Comput Sci 2022 2022/05/02 PMC9044365   10.7717/peerj-cs.934
29584598 Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry Norman B, Pedoia V, Majumdar S. Radiology. 2018 Jul;288(1):177-185. doi: 10.1148/radiol.2018172322. Epub 2018 Mar 27. Norman B Radiology 2018 2018/03/28 PMC6013406 NIHMS967812 10.1148/radiol.2018172322
32691905 T(2) analysis of the entire osteoarthritis initiative dataset Razmjoo A, Caliva F, Lee J, Liu F, Joseph GB, Link TM, Majumdar S, Pedoia V. J Orthop Res. 2021 Jan;39(1):74-85. doi: 10.1002/jor.24811. Epub 2020 Jul 27. Razmjoo A J Orthop Res 2021 2020/07/22     10.1002/jor.24811
33966462 Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction Lv J, Zhu J, Yang G. Philos Trans A Math Phys Eng Sci. 2021 Jun 28;379(2200):20200203. doi: 10.1098/rsta.2020.0203. Epub 2021 May 10. Lv J Philos Trans A Math Phys Eng Sci 2021 2021/05/10     10.1098/rsta.2020.0203
36423533 Denoising of three-dimensional fast spin echo magnetic resonance images of knee joints using spatial-variant noise-relevant residual learning of convolution neural network Zhao S, Cahill DG, Li S, Xiao F, Blu T, Griffith JF, Chen W. Comput Biol Med. 2022 Dec;151(Pt A):106295. doi: 10.1016/j.compbiomed.2022.106295. Epub 2022 Nov 9. Zhao S Comput Biol Med 2022 2022/11/24     10.1016/j.compbiomed.2022.106295
35508147 Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction Karkalousos D, Noteboom S, Hulst HE, Vos FM, Caan MWA. Phys Med Biol. 2022 Jun 8;67(12). doi: 10.1088/1361-6560/ac6cc2. Karkalousos D Phys Med Biol 2022 2022/05/04     10.1088/1361-6560/ac6cc2
34834515 Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging Awan MJ, Rahim MSM, Salim N, Rehman A, Nobanee H, Shabir H. J Pers Med. 2021 Nov 9;11(11):1163. doi: 10.3390/jpm11111163. Awan MJ J Pers Med 2021 2021/11/27 PMC8617867   10.3390/jpm11111163
36603439 SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction Zhao X, Yang T, Li B, Zhang X. Comput Biol Med. 2023 Feb;153:106513. doi: 10.1016/j.compbiomed.2022.106513. Epub 2022 Dec 31. Zhao X Comput Biol Med 2023 2023/01/05     10.1016/j.compbiomed.2022.106513
30306701 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. J Magn Reson Imaging. 2019 Feb;49(2):400-410. doi: 10.1002/jmri.26246. Epub 2018 Oct 10. Pedoia V J Magn Reson Imaging 2019 2018/10/12 PMC6521715 NIHMS1012205 10.1002/jmri.26246
34031789 A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative Deng Y, You L, Wang Y, Zhou X. J Digit Imaging. 2021 Aug;34(4):833-840. doi: 10.1007/s10278-021-00464-z. Epub 2021 May 24. Deng Y J Digit Imaging 2021 2021/05/25 PMC8455760   10.1007/s10278-021-00464-z
32523326 Networks for Joint Affine and Non-parametric Image Registration Shen Z, Han X, Xu Z, Niethammer M. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:4219-4228. doi: 10.1109/cvpr.2019.00435. Epub 2020 Jan 9. Shen Z Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2019 2020/06/12 PMC7286599 NIHMS1033312 10.1109/cvpr.2019.00435
34460769 Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks Denck J, Guehring J, Maier A, Rothgang E. J Imaging. 2021 Aug 4;7(8):133. doi: 10.3390/jimaging7080133. Denck J J Imaging 2021 2021/08/30 PMC8404922   10.3390/jimaging7080133
36384059 A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation Chadoulos CG, Tsaopoulos DE, Moustakidis S, Tsakiridis NL, Theocharis JB. Comput Methods Programs Biomed. 2022 Dec;227:107208. doi: 10.1016/j.cmpb.2022.107208. Epub 2022 Oct 28. Chadoulos CG Comput Methods Programs Biomed 2022 2022/11/17     10.1016/j.cmpb.2022.107208
35339616 DBGAN: A dual-branch generative adversarial network for undersampled MRI reconstruction Liu X, Du H, Xu J, Qiu B. Magn Reson Imaging. 2022 Jun;89:77-91. doi: 10.1016/j.mri.2022.03.003. Epub 2022 Mar 24. Liu X Magn Reson Imaging 2022 2022/03/27     10.1016/j.mri.2022.03.003
33018271 High-Fidelity Accelerated MRI Reconstruction by Scan-Specific Fine-Tuning of Physics-Based Neural Networks Hossein Hosseini SA, Yaman B, Moeller S, Akcakaya M. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1481-1484. doi: 10.1109/EMBC44109.2020.9176241. Hossein Hosseini SA Annu Int Conf IEEE Eng Med Biol Soc 2020 2020/10/06 PMC8597413 NIHMS1753915 10.1109/EMBC44109.2020.9176241
34823835 Automated tibiofemoral joint segmentation based on deeply supervised 2D-3D ensemble U-Net: Data from the Osteoarthritis Initiative Latif MHA, Faye I. Artif Intell Med. 2021 Dec;122:102213. doi: 10.1016/j.artmed.2021.102213. Epub 2021 Nov 14. Latif MHA Artif Intell Med 2021 2021/11/26     10.1016/j.artmed.2021.102213
34988758 Entropy and distance maps-guided segmentation of articular cartilage: data from the Osteoarthritis Initiative Li Z, Chen K, Liu P, Chen X, Zheng G. Int J Comput Assist Radiol Surg. 2022 Mar;17(3):553-560. doi: 10.1007/s11548-021-02555-2. Epub 2022 Jan 6. Li Z Int J Comput Assist Radiol Surg 2022 2022/01/06     10.1007/s11548-021-02555-2
31402520 Fully automated patellofemoral MRI segmentation using holistically nested networks: Implications for evaluating patellofemoral osteoarthritis, pain, injury, pathology, and adolescent development Cheng R, Alexandridi NA, Smith RM, Shen A, Gandler W, McCreedy E, McAuliffe MJ, Sheehan FT. Magn Reson Med. 2020 Jan;83(1):139-153. doi: 10.1002/mrm.27920. Epub 2019 Aug 11. Cheng R Magn Reson Med 2020 2019/08/13 PMC6778709 NIHMS1041450 10.1002/mrm.27920
37426618 Evaluation of effects of small-incision approach treatment on proximal tibia fracture by deep learning algorithm-based magnetic resonance imaging Li X, Yu H, Li F, He Y, Xu L, Xiao J. Open Life Sci. 2023 Jul 6;18(1):20220624. doi: 10.1515/biol-2022-0624. eCollection 2023. Li X Open Life Sci 2023 2023/07/10 PMC10329276   10.1515/biol-2022-0624
32956805 Deriving new soft tissue contrasts from conventional MR images using deep learning Wu Y, Li D, Xing L, Gold G. Magn Reson Imaging. 2020 Dec;74:121-127. doi: 10.1016/j.mri.2020.09.014. Epub 2020 Sep 19. Wu Y Magn Reson Imaging 2020 2020/09/21 PMC7669656 NIHMS1632926 10.1016/j.mri.2020.09.014
31049802 Extending pretrained segmentation networks with additional anatomical structures Ozdemir F, Goksel O. Int J Comput Assist Radiol Surg. 2019 Jul;14(7):1187-1195. doi: 10.1007/s11548-019-01984-4. Epub 2019 May 2. Ozdemir F Int J Comput Assist Radiol Surg 2019 2019/05/04     10.1007/s11548-019-01984-4
35951046 Diabetes-associated thigh muscle degeneration mediates knee osteoarthritis-related outcomes: results from a longitudinal cohort study Mohajer B, Moradi K, Guermazi A, Dolatshahi M, Zikria B, Najafzadeh N, Kalyani RR, Roemer FW, Berenbaum F, Demehri S. Eur Radiol. 2023 Jan;33(1):595-605. doi: 10.1007/s00330-022-09035-4. Epub 2022 Aug 11. Mohajer B Eur Radiol 2023 2022/08/11 PMC10448875 NIHMS1916796 10.1007/s00330-022-09035-4
34876922 Complexity Assessment of Chronic Pain in Elderly Knee Osteoarthritis Based on Neuroimaging Recognition Techniques Wu X, Liu J, Liu M, Wu T. Comput Math Methods Med. 2021 Nov 28;2021:7344102. doi: 10.1155/2021/7344102. eCollection 2021. Wu X Comput Math Methods Med 2021 2021/12/08 PMC8645396   10.1155/2021/7344102
35364383 Improved-Mask R-CNN: Towards an accurate generic MSK MRI instance segmentation platform (data from the Osteoarthritis Initiative) Felfeliyan B, Hareendranathan A, Kuntze G, Jaremko JL, Ronsky JL. Comput Med Imaging Graph. 2022 Apr;97:102056. doi: 10.1016/j.compmedimag.2022.102056. Epub 2022 Mar 19. Felfeliyan B Comput Med Imaging Graph 2022 2022/04/01     10.1016/j.compmedimag.2022.102056
34617020 Synthesizing Quantitative T2 Maps in Right Lateral Knee Femoral Condyles from Multicontrast Anatomic Data with a Conditional Generative Adversarial Network Sveinsson B, Chaudhari AS, Zhu B, Koonjoo N, Torriani M, Gold GE, Rosen MS. Radiol Artif Intell. 2021 May 26;3(5):e200122. doi: 10.1148/ryai.2021200122. eCollection 2021 Sep. Sveinsson B Radiol Artif Intell 2021 2021/10/07 PMC8489449   10.1148/ryai.2021200122
33241856 Automated magnetic resonance image segmentation of the anterior cruciate ligament Flannery SW, Kiapour AM, Edgar DJ, Murray MM, Fleming BC. J Orthop Res. 2021 Apr;39(4):831-840. doi: 10.1002/jor.24926. Epub 2020 Dec 7. Flannery SW J Orthop Res 2021 2020/11/26 PMC8005419 NIHMS1651243 10.1002/jor.24926
35245407 Personalized Risk Model and Leveraging of Magnetic Resonance Imaging-Based Structural Phenotypes and Clinical Factors to Predict Incidence of Radiographic Osteoarthritis Lee JJ, Namiri NK, Astuto B, Link TM, Majumdar S, Pedoia V. Arthritis Care Res (Hoboken). 2023 Mar;75(3):501-508. doi: 10.1002/acr.24877. Epub 2022 Dec 10. Lee JJ Arthritis Care Res (Hoboken) 2023 2022/03/04     10.1002/acr.24877
32479671 Deep-learned short tau inversion recovery imaging using multi-contrast MR images Kim S, Jang H, Jang J, Lee YH, Hwang D. Magn Reson Med. 2020 Dec;84(6):2994-3008. doi: 10.1002/mrm.28327. Epub 2020 Jun 1. Kim S Magn Reson Med 2020 2020/06/02     10.1002/mrm.28327
33337584 Detection of Differences in Longitudinal Cartilage Thickness Loss Using a Deep-Learning Automated Segmentation Algorithm: Data From the Foundation for the National Institutes of Health Biomarkers Study of the Osteoarthritis Initiative Eckstein F, Chaudhari AS, Fuerst D, Gaisberger M, Kemnitz J, Baumgartner CF, Konukoglu E, Hunter DJ, Wirth W. Arthritis Care Res (Hoboken). 2022 Jun;74(6):929-936. doi: 10.1002/acr.24539. Epub 2022 Apr 1. Eckstein F Arthritis Care Res (Hoboken) 2022 2020/12/18 PMC9321555   10.1002/acr.24539
37292137 Automated MRI quantification of volumetric per-muscle fat fractions in the proximal leg of patients with muscular dystrophies Huysmans L, De Wel B, Claeys KG, Maes F. Front Neurol. 2023 May 24;14:1200727. doi: 10.3389/fneur.2023.1200727. eCollection 2023. Huysmans L Front Neurol 2023 2023/06/09 PMC10244517   10.3389/fneur.2023.1200727
33747334 Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms Hosseini SAH, Yaman B, Moeller S, Hong M, Akçakaya M. IEEE J Sel Top Signal Process. 2020 Oct;14(6):1280-1291. doi: 10.1109/jstsp.2020.3003170. Epub 2020 Jun 17. Hosseini SAH IEEE J Sel Top Signal Process 2020 2021/03/22 PMC7978039 NIHMS1632252 10.1109/jstsp.2020.3003170
36581003 A More Posterior Tibial Tubercle (Decreased Sagittal Tibial Tubercle-Trochlear Groove Distance) Is Significantly Associated With Patellofemoral Joint Degenerative Cartilage Change: A Deep Learning Analysis Namiri NK, Càliva F, Martinez AM, Pedoia V, Lansdown DA. Arthroscopy. 2023 Jun;39(6):1493-1501.e2. doi: 10.1016/j.arthro.2022.11.040. Epub 2022 Dec 26. Namiri NK Arthroscopy 2023 2022/12/29     10.1016/j.arthro.2022.11.040
34359308 Comparison of the Predicting Performance for Fate of Medial Meniscus Posterior Root Tear Based on Treatment Strategies: A Comparison between Logistic Regression, Gradient Boosting, and CNN Algorithms Lee JI, Kim DH, Yoo HJ, Choi HG, Lee YS. Diagnostics (Basel). 2021 Jul 7;11(7):1225. doi: 10.3390/diagnostics11071225. Lee JI Diagnostics (Basel) 2021 2021/08/07 PMC8304966   10.3390/diagnostics11071225
31644542 Optimized fast GPU implementation of robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction Zhang C, Hosseini SAH, Weingärtner S, Uǧurbil K, Moeller S, Akçakaya M. PLoS One. 2019 Oct 23;14(10):e0223315. doi: 10.1371/journal.pone.0223315. eCollection 2019. Zhang C PLoS One 2019 2019/10/24 PMC6808331   10.1371/journal.pone.0223315
30903682 Quantification of patellofemoral cartilage deformation and contact area changes in response to static loading via high-resolution MRI with prospective motion correction Lange T, Taghizadeh E, Knowles BR, Südkamp NP, Zaitsev M, Meine H, Izadpanah K. J Magn Reson Imaging. 2019 Nov;50(5):1561-1570. doi: 10.1002/jmri.26724. Epub 2019 Mar 23. Lange T J Magn Reson Imaging 2019 2019/03/24     10.1002/jmri.26724
33585029 Studying human-AI collaboration protocols: the case of the Kasparov's law in radiological double reading Cabitza F, Campagner A, Sconfienza LM. Health Inf Sci Syst. 2021 Feb 5;9(1):8. doi: 10.1007/s13755-021-00138-8. eCollection 2021 Dec. Cabitza F Health Inf Sci Syst 2021 2021/02/15 PMC7864624   10.1007/s13755-021-00138-8
33640877 [Segmentation of knee cartilages in MR images with artificial intelligence] Szoldán P, Egyed Z, Szabó E, Somogyi J, Hangody G, Hangody L. Orv Hetil. 2021 Feb 28;162(9):352-360. doi: 10.1556/650.2021.32034. Szoldán P Orv Hetil 2021 2021/02/28     10.1556/650.2021.32034
36343061 Development of convolutional neural network model for diagnosing tear of anterior cruciate ligament using only one knee magnetic resonance image Shin H, Choi GS, Chang MC. Medicine (Baltimore). 2022 Nov 4;101(44):e31510. doi: 10.1097/MD.0000000000031510. Shin H Medicine (Baltimore) 2022 2022/11/07 PMC9646554   10.1097/MD.0000000000031510
34524564 Automatic segmentation of whole-body adipose tissue from magnetic resonance fat fraction images based on machine learning Wang Z, Cheng C, Peng H, Qi Y, Wan Q, Zhou H, Qu S, Liang D, Liu X, Zheng H, Zou C. MAGMA. 2022 Apr;35(2):193-203. doi: 10.1007/s10334-021-00958-5. Epub 2021 Sep 15. Wang Z MAGMA 2022 2021/09/15     10.1007/s10334-021-00958-5

The authors have declared that no competing interests exist.

References

  • 1.Traumatic knee injuries in 2016-2019 - an analysis of newly diagnosed patients based on NHF data reporting. Bednarski P, Piekarska K. Ortop Traumatol Rehabil. 2021;23:181–192. doi: 10.5604/01.3001.0014.9155. [DOI] [PubMed] [Google Scholar]
  • 2.Prevalence of knee injuries among male college students in Riyadh, Kingdom of Saudi Arabia. Almaawi A, Awwad W, Bamugaddam A, Alasheikh M, Muaddi M, Almutair O, Alomar AZ. J Orthop Surg Res. 2020;15:126. doi: 10.1186/s13018-020-01638-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Estimating the prevalence of knee pain and the association between illness perception profiles and self-management strategies in the Frederiksberg cohort of elderly individuals with knee pain: a cross-sectional study. Ginnerup-Nielsen E, Christensen R, Heitmann BL, et al. J Clin Med. 2021;10 doi: 10.3390/jcm10040668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Prevalence of concomitant knee injuries associated with anterior cruciate ligament tear in kabaddi and football players. Gupta R, Kapoor A, DavidMasih G. J Clin Orthop Trauma. 2020;11:0–8. doi: 10.1016/j.jcot.2020.05.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Work-related knee injuries treated in US emergency departments. Chen Z, Chakrabarty S, Levine RS, Aliyu MH, Ding T, Jackson LL. J Occup Environ Med. 2013;55:1091–1099. doi: 10.1097/JOM.0b013e31829b27bf. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.McDonald AT, Gross LB. The Sports Medicine Resource Manual. Amsterdam: Elsevier B.V; 2008. Knee injuries; pp. 328–341. [Google Scholar]
  • 7.Indirect structural muscle injuries of lower limb: rehabilitation and therapeutic exercise. Palermi S, Massa B, Vecchiato M, et al. J Funct Morphol Kinesiol. 2021;6 doi: 10.3390/jfmk6030075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Tendinopathies of the hip and pelvis in athletes: a narrative review. Sirico F, Palermi S, Massa B, Corrado B. J Hum Sports Exerc. 2020;15:748–762. [Google Scholar]
  • 9.Anterior cruciate ligament tear. Musahl V, Karlsson J. N Engl J Med. 2019;380:2341–2348. doi: 10.1056/NEJMcp1805931. [DOI] [PubMed] [Google Scholar]
  • 10.A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. Alanazi HO, Abdullah AH, Qureshi KN. J Med Syst. 2017;41:69. doi: 10.1007/s10916-017-0715-6. [DOI] [PubMed] [Google Scholar]
  • 11.Pitfalls and pearls in MRI of the knee. Mohankumar R, White LM, Naraghi A. AJR Am J Roentgenol. 2014;203:516–530. doi: 10.2214/AJR.14.12969. [DOI] [PubMed] [Google Scholar]
  • 12.Normative values for the KOOS and WOMAC in a young athletic population: history of knee ligament injury is associated with lower scores. Cameron KL, Thompson BS, Peck KY, Owens BD, Marshall SW, Svoboda SJ. Am J Sports Med. 2013;41:582–589. doi: 10.1177/0363546512472330. [DOI] [PubMed] [Google Scholar]
  • 13.Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. Bien N, Rajpurkar P, Ball RL, et al. PLoS Med. 2018;15:0. doi: 10.1371/journal.pmed.1002699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Deep learning in medical image analysis. Shen D, Wu G, Suk HI. Annu Rev Biomed Eng. 2017;19:221–248. doi: 10.1146/annurev-bioeng-071516-044442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.What are the applications and limitations of artificial intelligence for fracture detection and classification in orthopaedic trauma imaging? A systematic review. Langerhuizen DW, Janssen SJ, Mallee WH, et al. Clin Orthop Relat Res. 2019;477:2482–2491. doi: 10.1097/CORR.0000000000000848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Diagnostic performance of artificial intelligence for detection of anterior cruciate ligament and meniscus tears: a systematic review. Kunze KN, Rossi DM, White GM, Karhade AV, Deng J, Williams BT, Chahla J. Arthroscopy. 2021;37:771–781. doi: 10.1016/j.arthro.2020.09.012. [DOI] [PubMed] [Google Scholar]
  • 17.ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Sterne JA, Hernán MA, Reeves BC, et al. BMJ. 2016;355:0. doi: 10.1136/bmj.i4919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model. Li J, Qian K, Liu J, et al. J Orthop Translat. 2022;34:91–101. doi: 10.1016/j.jot.2022.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury. Li Z, Ren S, Zhou R, Jiang X, You T, Li C, Zhang W. J Healthc Eng. 2021;2021:4076175. doi: 10.1155/2021/4076175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach. Awan MJ, Rahim MS, Salim N, Mohammed MA, Garcia-Zapirain B, Abdulkareem KH. Diagnostics (Basel) 2021;11 doi: 10.3390/diagnostics11010105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Interpretable and lightweight 3-D deep learning model for automated ACL diagnosis. Jeon Y, Yoshino K, Hagiwara S, Watanabe A, Quek ST, Yoshioka H, Feng M. IEEE J Biomed Health Inform. 2021;25:2388–2397. doi: 10.1109/JBHI.2021.3081355. [DOI] [PubMed] [Google Scholar]
  • 22.Meniscal lesion detection and characterization in adult knee MRI: a deep learning model approach with external validation. Rizk B, Brat H, Zille P, et al. Phys Med. 2021;83:64–71. doi: 10.1016/j.ejmp.2021.02.010. [DOI] [PubMed] [Google Scholar]
  • 23.Transmed: transformers advance multi-modal medical image classification. Dai Y, Gao Y, Liu F. Diagnostics (Basel) 2021;11 doi: 10.3390/diagnostics11081384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies. Astuto B, Flament I, K Namiri N, et al. Radiol Artif Intell. 2021;3:0. doi: 10.1148/ryai.2021200165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference. Fritz B, Marbach G, Civardi F, Fucentese SF, Pfirrmann CW. Skeletal Radiol. 2020;49:1207–1217. doi: 10.1007/s00256-020-03410-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI. Namiri NK, Flament I, Astuto B, et al. Radiol Artif Intell. 2020;2:0. doi: 10.1148/ryai.2020190207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. Zhang L, Li M, Zhou Y, Lu G, Zhou Q. J Magn Reson Imaging. 2020;52:1745–1752. doi: 10.1002/jmri.27266. [DOI] [PubMed] [Google Scholar]
  • 28.Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-t and 3-t magnetic field strengths. Germann C, Marbach G, Civardi F, et al. Invest Radiol. 2020;55:499–506. doi: 10.1097/RLI.0000000000000664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.A comparative study of existing and new deep learning methods for detecting knee injuries using the mrnet dataset. Azcona D, McGuinness K, Smeaton AF. Int Conf Eng Technol Technopreneurship. 2020:149–155. [Google Scholar]
  • 30.Deep learning for detection of complete anterior cruciate ligament tear. Chang PD, Wong TT, Rasiej MJ. J Digit Imaging. 2019;32:980–986. doi: 10.1007/s10278-019-00193-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Liu F, Guan B, Zhou Z, et al. Radiol Artif Intell. 2019;1:180091. doi: 10.1148/ryai.2019180091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Couteaux V, Si-Mohamed S, Nempont O, et al. Diagn Interv Imaging. 2019;100:235–242. doi: 10.1016/j.diii.2019.03.002. [DOI] [PubMed] [Google Scholar]
  • 33.3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. J Magn Reson Imaging. 2019;49:400–410. doi: 10.1002/jmri.26246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Artificial intelligence to diagnose meniscus tears on MRI. Roblot V, Giret Y, Bou Antoun M, et al. Diagn Interv Imaging. 2019;100:243–249. doi: 10.1016/j.diii.2019.02.007. [DOI] [PubMed] [Google Scholar]
  • 35.Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Liu F, Zhou Z, Samsonov A, et al. Radiology. 2018;289:160–169. doi: 10.1148/radiol.2018172986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Semi-automated detection of anterior cruciate ligament injury from MRI. Štajduhar I, Mamula M, Miletić D, Ünal G. Comput Methods Programs Biomed. 2017;140:151–164. doi: 10.1016/j.cmpb.2016.12.006. [DOI] [PubMed] [Google Scholar]
  • 37.Anterior cruciate ligament (ACL) Injury classification system using support vector machine (SVM) Mazlan SS, Ayob M, Bakti ZK. Int Conf Eng Technol Technopreneurship. 2017;2:1–5. [Google Scholar]
  • 38.A computer-aided type-II fuzzy image processing for diagnosis of meniscus tear. Zarandi MH, Khadangi A, Karimi F, Turksen IB. J Digit Imaging. 2016;29:677–695. doi: 10.1007/s10278-016-9884-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging. Fu JC, Lin CC, Wang CN, Ou YK. J Ind Prod Eng. 2013;30:67–77. [Google Scholar]
  • 40.Design of an intelligent diagnostic system for detection of knee injuries. Abdullah AA, Azz-Zahra NS. Appl Mech Mater. 2013;399:219–224. [Google Scholar]
  • 41.Knee injury detection using deep learning on MRI studies: a systematic review. Siouras A, Moustakidis S, Giannakidis A, et al. Diagnostics (Basel) 2022;12 doi: 10.3390/diagnostics12020537. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cureus are provided here courtesy of Cureus Inc.

RESOURCES