Skip to main content
Scientific Data logoLink to Scientific Data
. 2023 Oct 25;10:742. doi: 10.1038/s41597-023-02619-9

PADAPT 1.0 – the Pannonian Dataset of Plant Traits

Judit Sonkoly 1,2,#, Edina Tóth 1,#, Nóra Balogh 1, Lajos Balogh 3, Dénes Bartha 4, Kinga Csendesné Bata 5, Zoltán Bátori 6, Nóra Békefi 7, Zoltán Botta-Dukát 8, János Bölöni 8, Anikó Csecserits 8, János Csiky 9, Péter Csontos 10, István Dancza 11, Balázs Deák 12, Zoltán Konstantin Dobolyi 13, Anna E-Vojtkó 14, Ferenc Gyulai 15, Alida Anna Hábenczyus 6, Tamás Henn 16, Ferenc Horváth 8, Mária Höhn 17, Gusztáv Jakab 18, András Kelemen 6,12, Gergely Király 19, Szabolcs Kis 20,21, Gergely Kovacsics-Vári 1, András Kun 22, Éva Lehoczky 23, Attila Lengyel 8, Barbara Lhotsky 8,24, Viktor Löki 25, Balázs András Lukács 25, Gábor Matus 20, Andrea McIntosh-Buday 1,2, Attila Mesterházy 25, Tamás Miglécz 26, Attila Molnár V 20,21, Zsolt Molnár 8, Tamás Morschhauser 27, László Papp 28, Patrícia Pósa 29, Tamás Rédei 8, Dávid Schmidt 4, Ferenc Szmorad 30, Attila Takács 20,21, Júlia Tamás 31, Viktor Tiborcz 32, Csaba Tölgyesi 2,33, Katalin Tóth 1, Béla Tóthmérész 1,34, Orsolya Valkó 12, Viktor Virók 35, Tamás Wirth 36, Péter Török 1,2,37,
PMCID: PMC10600112  PMID: 37880224

Abstract

The existing plant trait databases’ applicability is limited for studies dealing with the flora and vegetation of the eastern and central part of Europe and for large-scale comparisons across regions, mostly because their geographical data coverage is limited and they incorporate records from several different sources, often from regions with markedly different climatic conditions. These problems motivated the compilation of a regional dataset for the flora of the Pannonian region (Eastern Central Europe). PADAPT, the Pannonian Dataset of Plant Traits relies on regional data sources and collates data on 54 traits and attributes of the plant species of the Pannonian region. The current version covers approximately 90% of the species of the region and consists of 126,337 records on 2745 taxa. By including species of the eastern part of Europe not covered by other databases, PADAPT can facilitate studying the flora and vegetation of the eastern part of the continent. Although data coverage is far from complete, PADAPT meets the longstanding need for a regional database of the Pannonian flora.

Subject terms: Ecology, Community ecology

Background & Summary

The trait-based approach has been significantly advancing our ecological and evolutionary understanding in various fields of research including vegetation science1,2. To support trait-based analyses with suitable data, several international plant trait databases have been established in the last decades. Some of them compile data for a wide range of traits at the regional scale, e.g., BiolFlor for the German flora3, LEDA for Northwest Europe4, BROT for the flora of the Mediterranean5, or AusTraits for the Australian flora6. Other databases provide data for a specific group of traits at the global scale, e.g., SID, the Seed Information Database7, D3, the Dispersal and Diaspore Database8, and SylvanSeeds, a germination database of deciduous forests9. There are also databases covering not only the traits and attributes of the flora of a region but also its vegetation, such as PLADIAS, the Database of the Czech Flora and Vegetation10. TRY11, the most frequently used (meta-)database, incorporates several databases, thus providing a global coverage for numerous plant traits.

Although data on a broad range of traits can be relatively easily retrieved from these databases, the fact that they incorporate records from several different sources, often from regions with markedly different climatic conditions, sometimes also with varying measurement standards is a shortcoming for certain analyses. Climate and local abiotic conditions can cause substantial intraspecific trait variability12, which renders the application of such broad-scale databases problematic for regional-scale studies. Moreover, the existing European databases’ geographical coverage is limited and mostly focused either on the flora of the western and north-western part of Europe, or on the southern, mostly Mediterranean parts of the continent5,13.

Our dataset aims to cover the flora of the Pannonian biogeographic region which is situated in the eastern part of Central Europe surrounded by the Carpathians, the Alps, and the Dinaric Mountains. For the purpose of the dataset, we considered the Pannonian biogeographic region in the broadest sense; thus, we considered all areas included in any one of the overlapping territories of the Pannonian vegetation region, the Pannonicum floristic region or the Pannonian biogeographic region recognised by the European Union (for an overview see Fekete et al.14). The whole territory of Hungary is included in this region, along with some rather small, typically lowland areas of Slovakia, the Czech Republic, Austria, Slovenia, Croatia, Serbia, Romania, and Ukraine. Our main reason for choosing the described region was that the territory of Hungary does not match with any (bio)geographical region, and it is more reasonable and meaningful for the dataset to cover a biogeographical region rather than a political entity such as a country.

Due to the above-mentioned geographical focus of the existing databases, a great proportion of the Pannonian flora is not represented in them. These problems limit the applicability of the existing databases for not just studies of the Pannonian flora and vegetation, but for studies in the eastern and central part of the continent in general, and also for studies attempting large-scale comparisons across regions.

The above-mentioned issues have motivated the compilation of a dataset focusing on the Pannonian flora. Here, we introduce PADAPT 1.0, the Pannonian Dataset of Plant Traits, which relies on regional data sources and collates data on a wide range of traits and attributes of the Pannonian flora and makes it broadly available to the international scientific community.

PADAPT 1.0 provides regionally collected data and covers a high number of species with continental, Balkanic, and Pontic distributions; thus, it will promote studies of the flora and vegetation of not only the Pannonian region, but also the whole eastern half of the continent. The new dataset highlights data gaps, facilitates their targeted filling and promotes the exploration of intraspecific trait variability. Data collection will continue in the future and the PADAPT team welcomes any researcher interested in contributing to PADAPT with new regional data. In the coming years we expect to release PADAPT 2.0 complemented with additional attributes and further species.

Methods

The checklist of taxa was based on the checklist of the Distribution atlas of vascular plants of Hungary15 which is constantly being updated with the species newly discovered in the country and therefore it is the most up-to-date checklist of the flora of Hungary. We adopted the checklist of the distribution atlas as of 1st January 2020, and then we used this checklist to harmonise the data coming from different sources. The current version of the dataset, PADAPT 1.0 only includes species of the Pannonian region that occur within the territory of Hungary, but trait measurements were in part carried out on specimens collected outside of Hungary16,17. As several of the data sources do not distinguish between subspecies, subspecies are generally not distinguished in the dataset either, except in cases when just one subspecies occurs in Hungary (e.g., Astragalus vesicarius subsp. albidus).

Along with the initialisation of collecting existing data, the PADAPT team started a sampling campaign in the Pannonian region to allow for measurements of leaf traits and seed mass in order to expand the range of existing trait data. The PADAPT protocol for measuring seed mass and leaf traits was based on data standards for LEDA4 and the protocols by Perez-Harguindeguy et al.18. These trait data have already been published16,17 and resulted in new leaf trait records for 1156 species16 and new thousand-seed mass (TSM) data for 281 species17 that have been incorporated into PADAPT.

To incorporate in the dataset, we considered data published in books and peer reviewed articles. There are four exceptions: the IUCN Red List category of species, and Conservation status (in Hungary), Conservation value (HUF), and Year of protection (in Hungary) which are based on a ministerial decree currently in force in Hungary (see Table 1). To reduce the effect of intraspecific variability and different climatic conditions in other regions, we aimed to focus on trait data measured in the Pannonian region and did not consider publications which contain trait data for the species in the PADAPT checklist but from different regions. Some of the attributes are based on a single data source, while for some other attributes we collated data from several different published sources (see Tables 1, 2). The dataset includes multiple columns for traits for which we have data from multiple sources (thousand-seed mass, seed bank persistence, and all leaf traits). The published sources that were used to collect the data differ in their approach regarding the presentation of the measured values. Some of them only present the mean of multiple measurements (e.g., the mean of three leaves of each of ten individuals), while some of them contain more data points per species (e.g., presenting the means of leaves coming from different individuals separately). We decided to unify the approaches of the different sources by taking one mean value per data source per species. In most cases it results in one data point per species per locality. We applied a different approach only with chromosome numbers and ploidy levels because these data originate from 33 different published sources and most of these sources contain data for only a very limited set of the species.

Table 1.

Overview of the 54 attributes included in PADAPT 1.0: Attributes related to growth habit, strategy, reproduction, dispersal, karyology, distribution, and conservation (continued in Table 2).

Attribute name Type Units Data coverage Relevant columns in the dataset25 Data sources
Minimum height Cont. cm 95.6% 1 26
Maximum height Cont. cm 95.9% 2 26
Raunkiær life form Categ. 96.2% 3 26
Social Behaviour Type Categ. 80.7% 4 24
Ujvárosi’s life form system Categ. 28.8% 5 27
Modified Ellenberg—Müller-Dombois life form system Categ. 89.6% 6–7 28
Onset of flowering Ord. Months 96.1% 8 26
Duration of flowering Ord. Months 96.1% 9 26
Thousand-seed mass (TSM) Cont. g 67.1% 10–14 17,20,21,2931
Seed mass category Ord. 80.7% 15 1921
Seed bank persistence Ord. 19.7% 16–23 19,3236
Seed bank persistence index Cont. 19.7% 24 19,3236
Dispersal strategy Categ. 100% 25 22
Chromosome number List* 83.7% 26 3769
Ploidy level Categ. 3.1% 27 3769
Phytosociological categorization (Soó) Categ. 73.2% 28 23,24,70118
Phytosociological categorization (Borhidi) Categ. 75.0% 29 23,24,70118
Nativeness Categ. 100% 30 119
Residence time Categ. 100% 31 119
Introduction mode Categ. 100% 32 119
Invasion status Categ. 100% 33 119
Area type Categ. 82.2% 34 70
Conservation status (in Hungary) Categ. 100% 35 Decree 13/2001 KÖM
Conservation value (HUF) Categ. HUF 100% 36 Decree 13/2001 KÖM
Year of protection (in Hungary) Categ. Year 100% 37 Decree 13/2001 KÖM
IUCN Red List category Categ. 100% 38 https://www.iucnredlist.org/
Hungarian Red List category Categ. 100% 39 120
Conservation value category Categ. 99.7% 40 121

Notations: Categ. – categorical variable; Cont. – continuous variable; Ord. – Ordinal variable. *A list of chromosome numbers of the species reported in the literature.

Table 2.

Overview of the 54 attributes included in PADAPT 1.0: Ecological indicator values and leaf traits (continued from Table 1).

Attribute name Type Units Data coverage Relevant columns in the dataset25 Data sources
Ellenberg’s L (EIC) Ord. 64.5% 41 122
Ellenberg’s T (EIC) Ord. 64.5% 42 122
Ellenberg’s K (EIC) Ord. 64.5% 43 122
Ellenberg’s F (EIC) Ord. 64.5% 44 122
Ellenberg’s R (EIC) Ord. 64.5% 45 122
Ellenberg’s N (EIC) Ord. 64.5% 46 122
Ellenberg’s S (EIC) Ord. 64.5% 47 122
Zólyomi’s T (EIC) Ord. 62.5% 48 70,123
Zólyomi’s W (EIC) Ord. 63.4% 49 70,123
Zólyomi’s R (EIC) Ord. 62.2% 50 70,123
Soó’s T (EIC) Ord. 76.9% 51 23,70
Soó’s F (EIC) Ord. 77.0% 52 23,70
Soó’s R (EIC) Ord. 75.0% 53 23,70
Soó’s N (EIC) Ord. 72.8% 54 23,70
Borhidi’s T (EIC) Ord. 77.1% 55 24
Borhidi’s W (EIC) Ord. 77.1% 56 24
Borhidi’s R (EIC) Ord. 77.1% 57 24
Borhidi’s N (EIC) Ord. 77.1% 58 24
Borhidi’s L (EIC) Ord. 77.1% 59 24
Borhidi’s C (EIC) Ord. 77.1% 60 24
Borhidi’s S (EIC) Ord. 77.1% 61 24
Leaf area (LA) Cont. mm2 57.8% 62–65 16,124126
Leaf dry matter content (LDMC) Cont. mg/g 57.4% 66–69 16,124126
Specific leaf area (SLA) Cont. mm2/mg 57.4% 70–73 16,124126
Leaf fresh mass Cont. g 55.6% 74–75 16,125
Leaf dry mass Cont. mg 55.4% 76–77 16,125

Notations: Categ. – categorical variable; Cont. – continuous variable; Ord. – Ordinal variable; EIC – Ecological indicator value.

In case of seed mass category, we were able to categorise further species into the system of Csontos19 based on recent publications containing data from seed mass measurements carried out in Hungary20,21. Seed bank persistence index was calculated as the ratio of data indicating a persistent soil seed bank with a value from 0 to 1, where zero means that all available published data indicates a transient seed bank, and 1 means that all data indicates a persistent seed bank. In case of dispersal strategy, species that have not been evaluated by Sádlo et al.22 were categorised into the same dispersal strategies according to the descriptions provided in Sádlo et al.22. Some of the species previously not categorised into Soó’s and Borhidi’s phytosociogical system23,24 were also assigned a phytosociological category based on literature data (see Table 1).

A trait or attribute was included in PADAPT if appropriate data was available for it for a considerable proportion of the checklist and if it was considered meaningful for future ecological studies. After all these considerations, we have compiled the dataset based on 109 published sources (Tables 1, 2).

Data Records

The current version, PADAPT 1.0 consists of 126,337 individual records on 2745 taxa based on 109 different published sources. There are 54 attributes included in PADAPT. A summary of all the included traits and attributes is presented in Tables 1, 2. The dataset is available from figshare25 (10.6084/m9.figshare.21937157.v2) and the dataset file25 also includes a short explanation and data sources for every attribute.

Technical Validation

Data included in PADAPT are based on published sources (peer-reviewed journal articles and books). Experts of the respective field were involved in the data compilation for every attribute to obtain greater accuracy and reliability. After the compilation of the dataset, all attributes were checked for errors by looking for abnormal values and outliers. In some cases, the issues were resolved by checking the original publications again or asking the author(s). Presumably erroneous values were omitted from the dataset. Despite the measures taken to attain high reliability, the occurrence of errors in the dataset is still possible and we encourage users to report any errors to the authors.

The PADAPT protocol for measuring seed mass and leaf traits was based on data standards for LEDA4 and the protocols by Perez-Harguindeguy et al.18 to ensure that the recently obtained trait data16,17 included in PADAPT are reliable and comparable to other databases.

The current version (1.0) includes only the species that can be found in the territory of Hungary. Although the number of species in the Pannonian flora is not established in the literature, we estimate that approximately 90% of the flora of the region is already represented in the current version.

Usage Notes

Besides the dataset reposited in figshare25, data presented here is also available in an interactive form at the website www.padapt.eu.

All data included in PADAPT 1.0 are public, but the present paper should be appropriately referenced when using the data.

Acknowledgements

We are very grateful for the detailed comments of our reviewers and especially for the helpful input and suggestions of the Chief Editor. We are grateful for Patricia Díaz Cando, Kata Frei, Alexandra Tomasovszky and Viktória Törő-Szijgyártó for their help in trait measurements. The authors and/or the dataset building project were supported by NKFIH: PD 137747 (JS), KH 130320 (ET), K 119225 (PT), FK 142428 (ZB), K 137573 (PT), KKP 144068 (PT), PD 138859 (AL), PD 137828 (AT) and PD 138715 (VL). JS, AK and ZB were supported by the Bolyai János Scholarship of the Hungarian Academy of Sciences (BO/00587/23/8, BO/00713/19 and BO/00298/21, respectively). AAH was supported by the New National Excellence Program of the Ministry for Innovation and Technology of Hungary (UNKP-21-3-SZTE-389). JS was supported by the ÚNKP-23-5 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. The work of GJ was supported by the Climate Change Hungarian National Laboratory RRF-2.3.1-21-2022-00014, the project NKFIH 129167 and KKP 144209. This project has received funding from the HUN-REN Hungarian Research Network.

Author contributions

P.T. conceived the idea of the dataset and led the work of the consortium; all authors contributed with data; J.S. and E.T. coordinated the compilation of the data; J.S. coordinated the construction of the website; J.S. and P.T. wrote the first draft of the manuscript and all authors contributed critically to the draft and gave final approval for publication.

Funding

Open access funding provided by University of Debrecen.

Code availability

No code was used to generate or process the data presented in this manuscript.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Judit Sonkoly, Edina Tóth.

References

  • 1.Lavorel S, Garnier É. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 2002;16:545–556. doi: 10.1046/j.1365-2435.2002.00664.x. [DOI] [Google Scholar]
  • 2.Török P, Bullock JM, Jiménez-Alfaro B, Sonkoly J. The importance of dispersal and species establishment in vegetation dynamics and resilience. J. Veg. Sci. 2020;31:935–942. doi: 10.1111/jvs.12958. [DOI] [Google Scholar]
  • 3.Kühn I, Durka W, Klotz S. BiolFlor: a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 2004;10:363–365. doi: 10.1111/j.1366-9516.2004.00106.x. [DOI] [Google Scholar]
  • 4.Kleyer M, et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 2008;96:1266–1274. doi: 10.1111/j.1365-2745.2008.01430.x. [DOI] [Google Scholar]
  • 5.Tavşanoğlu Ç, Pausas JG. A functional trait database for Mediterranean Basin plants. Sci. Data. 2018;5:1–18. doi: 10.1038/sdata.2018.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Falster D, et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data. 2021;8:1–20. doi: 10.1038/s41597-021-01006-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Royal Botanic Gardens Kew. Seed Information Database (SID), version 7.1. http://data.kew.org/sid/ (2022).
  • 8.Hintze C, et al. D3: the dispersal and diaspore database–baseline data and statistics on seed dispersal. Perspect. Plant Ecol. Evol. Syst. 2013;15:180–192. doi: 10.1016/j.ppees.2013.02.001. [DOI] [Google Scholar]
  • 9.Fernández-Pascual E. SylvanSeeds, a seed germination database for temperate deciduous forests. J. Veg. Sci. 2021;32:e12960. doi: 10.1111/jvs.12960. [DOI] [Google Scholar]
  • 10.Chytrý M, et al. Pladias Database of the Czech flora and vegetation. Preslia. 2021;93:1–87. doi: 10.23855/preslia.2021.001. [DOI] [Google Scholar]
  • 11.Kattge J, et al. TRY plant trait database–enhanced coverage and open access. Glob. Chang. Biol. 2020;26:119–188. doi: 10.1111/gcb.14904. [DOI] [PubMed] [Google Scholar]
  • 12.Albert CH, et al. A multi-trait approach reveals the structure and the relative importance of intra vs. interspecific variability in plant traits. Funct. Ecol. 2010;24:1192–1201. doi: 10.1111/j.1365-2435.2010.01727.x. [DOI] [Google Scholar]
  • 13.Cerabolini BE, et al. Can CSR classification be generally applied outside Britain? Plant Ecol. 2010;210:253–261. doi: 10.1007/s11258-010-9753-6. [DOI] [Google Scholar]
  • 14.Fekete G, Király G. & Molnár, Zs. Delineation of the Pannonian vegetation region. Comm. Ecol. 2016;17:114–124. doi: 10.1556/168.2016.17.1.14. [DOI] [Google Scholar]
  • 15.Bartha, D., Bán, M., Schmidt, D. & Tiborcz, V. Vascular plants of Hungary online database (http://floraatlasz.uni-sopron.hu) Department of Botany and Nature Conservation, Faculty of Forestry, Sopron University (2022)
  • 16.McIntosh-Buday A, et al. New data of plant leaf traits from Central Europe. Data Br. 2022;42:108286. doi: 10.1016/j.dib.2022.108286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Törő-Szijgyártó, et al. New thousand-seed weight dataset for plant species of Central Europe. Data Br. 2023;48:109081. doi: 10.1016/j.dib.2023.109081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Perez-Harguindeguy N, et al. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016;64:715–716. doi: 10.1071/BT12225_CO. [DOI] [Google Scholar]
  • 19.Csontos, P. A természetes magbank kutatásának módszerei (Scientia Kiadó, 2001).
  • 20.Török P, et al. New thousand-seed weight records of the Pannonian flora and their application in analysing social behaviour types. Acta Bot. Hung. 2013;55:429–472. doi: 10.1556/ABot.55.2013.3-4.17. [DOI] [Google Scholar]
  • 21.Török P, et al. New measurements of thousand-seed weight of species in the Pannonian Flora. Acta Bot. Hung. 2016;58:187–198. doi: 10.1556/034.58.2016.1-2.10. [DOI] [Google Scholar]
  • 22.Sádlo J, Chytrý M, Pergl J, Pyšek P. Plant dispersal strategies: a new classification based on the multiple dispersal modes of individual species. Preslia. 2018;90:1–22. doi: 10.23855/preslia.2018.001. [DOI] [Google Scholar]
  • 23.Soó, R. A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve, I–VI. (Akadémiai Kiadó, 1964-1980).
  • 24.Borhidi A. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 1995;39:97–181. [Google Scholar]
  • 25.Sonkoly J, 2023. PADAPT 1.0 – the Pannonian Dataset of Plant Traits. figshare. [DOI] [PMC free article] [PubMed]
  • 26.Király, G. Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. [New Hungarian Herbal. The Vascular Plants of Hungary. Identification key.] (Aggteleki Nemzeti Park Igazgatóság, 2009).
  • 27.Ujvárosi, M. Gyomnövények (Mezőgazdasági Kiadó, 1973).
  • 28.Botta-Dukát Z, Bartha D, Dancza I, Lukács BA, Pinke G. Adaptation of life form categorization of Ellenberg and Mueller-Dombois to the Hungarian flora. Acta Bot. Hung. 2023;65:1–34. doi: 10.1556/034.65.2023.1-2.1. [DOI] [Google Scholar]
  • 29.Schermann, S. Magismeret I-II. (Akadémiai Kiadó, 1967).
  • 30.Csontos P, Tamás J, Balogh L. Thousand seed weight records of species from the flora of Hungary, I. Monocotyledonopsida. Stud. Bot. Hung. 2003;34:121–126. [Google Scholar]
  • 31.Csontos P, Tamás J, Balogh L. Thousand seed weight records of species from the flora of Hungary, II. Dicotyledonopsida. Stud. Bot. Hung. 2007;38:179–189. [Google Scholar]
  • 32.Csontos P, Kalapos T, Tamás J. Comparison of seed longevity for thirty forest, grassland and weed species of the Central European Flora: Results of a seed burial experiment. Polish J. Ecol. 2016;64:313–326. doi: 10.3161/15052249PJE2016.64.3.002. [DOI] [Google Scholar]
  • 33.Matus G, Tóthmérész B, Papp M. Restoration prospects of abandoned species-rich sandy grasslands in Hungary. Appl. Veg. Sci. 2003;6:169–178. [Google Scholar]
  • 34.Valkó O, Török P, Tóthmérész B, Matus G. Restoration potential in seed banks of acidic fen and dry‐mesophilous meadows: can restoration be based on local seed banks? Rest. Ecol. 2011;19:9–15. doi: 10.1111/j.1526-100X.2010.00679.x. [DOI] [Google Scholar]
  • 35.Török, P. A magkészlet szerepe mészkerülő gyepek rehabilitációjában. (PhD dissertation, Debreceni Egyetem, 2008)
  • 36.Tóth, K. A magbank szerepe a természetes gyepek diverzitásának fenntartásában és a gyepregenerációban. (PhD dissertation, Debreceni Egyetem, 2015).
  • 37.Bódis J, et al. Biological flora of Central Europe Himantoglossum adriaticum H. Baumann. PPEES. 2019;40:125461. [Google Scholar]
  • 38.Canne JM. Determinations of chromosome numbers in Viola (Violaceae) Can. J. Bot. 1987;65:653–655. doi: 10.1139/b87-086. [DOI] [Google Scholar]
  • 39.de Castro D. Novas numeros de cromosomas para o genero Cytisus L. Agronomia Lusitana. 1949;11:85–89. [Google Scholar]
  • 40.Ciocarlan, V. Flora Ilustrata a Romaniei (Editura CERES, 2009)
  • 41.Dvořak F. Study of chromosomes of Angiosperms 5. Scripta Fac. Sci. Nat. UJEP Brun., Biol. 1977;l:9–30. [Google Scholar]
  • 42.D’Emerico S, Paciola C, Tomasi F. Contribution to the karyomorphology of some species of the genus Quercus. Silvae Genetica. 2000;49:243–245. [Google Scholar]
  • 43.Dönmez AA. The genus Crataegus L. (Rosaceae) with special reference to hybridisation and biodiversity in Turkey. Turk. J. Bot. 2004;28:29–37. [Google Scholar]
  • 44.Forissier, R. IOPB Chromosome number reports XLVII. Taxon24, 143-146. & 671–678 (1973).
  • 45.Forissier R. Recherches cytotaxonomiques préliminaires sur les genres Lembotropis, Cytisus, Chamaecytisus, Genista et Chamaespartium. Bulletin de la Société Neuchâteloise des Sciences Naturelles. 1973;96:51–65. [Google Scholar]
  • 46.Gilot J. Contribution à l’étude cytotaxonomique des Genisteae et des Loteae. Cellule. 1965;65:317–347. [Google Scholar]
  • 47.Gregor T, Hand R. Chromosomenzahlen von Farn- und Samenpflanzen aus Deutschland. Kochia. 2014;8:63–70. doi: 10.21248/kochia.v8.72. [DOI] [Google Scholar]
  • 48.Holubová-Klásková A. Bemerkungen zur Gliederung der Gattung Cytisus L. s.l. Acta Universitatis Carolinae Biolgica. 1964;2:1–23. [Google Scholar]
  • 49.Kole, C. Forest Trees (Springer, 2007)
  • 50.Kovanda M. Polyploidy and variation in the Campanula rotundifolia complex. Part II (Taxonomic). 2. Revision of the groups Saxicolae, Lanceolatae and Alpicolae in Czechoslovakia and adjacent regions. Folia Geobotanica & Phytotaxonomica. 1970;5:171–208. doi: 10.1007/BF02851825. [DOI] [Google Scholar]
  • 51.Majure CL, et al. Phylogeny of Opuntia s.s. (Cactaceae): Clade delineation, geographic origins, and reticulate evolution. Amer. J. Bot. 2012;99:847–864. doi: 10.3732/ajb.1100375. [DOI] [PubMed] [Google Scholar]
  • 52.Löve Á. IOPB chromosome number reports XLII. Taxon. 1973;22:647–654. doi: 10.1002/j.1996-8175.1973.tb03416.x. [DOI] [Google Scholar]
  • 53.Májovsky, J. & Murin, A. Karyotaxonomický Prehľad Flóry Slovenska (Veda, 1987).
  • 54.Moore, D. M. Flora Europaea Check-list and Chromosome Index. (Cambridge University Press, 1982).
  • 55.McKelvey SD, Sax K. Taxonomic and cytological relationships of Yucca and Agave. Journal of the Arnold Arboretum. 1933;14:76–81. doi: 10.5962/bhl.part.9957. [DOI] [Google Scholar]
  • 56.Moulanis D, Illies ZM. Vergleichende zytologische Untersuchungen der Chromosomenstruktur von Abies borisii-regis Mattf., A. cephalonica Loud, und A. alba Mill. Silvae Genetica. 1975;24:115–118. [Google Scholar]
  • 57.Nebel BR. Chromosome counts in Vitis and Pyrus. Amer. Natur. 1929;63:188–189. doi: 10.1086/280251. [DOI] [Google Scholar]
  • 58.Németh C. Sorbus pelsoensis (Sorbus subgenus Tormaria), a new species from the surroundings of Lake Balaton, Hungary. Stud. Bot. Hung. 2015;46:49–60. doi: 10.17110/StudBot.2015.46.1.49. [DOI] [Google Scholar]
  • 59.Ohri D, Ahuja MR. Giemsa C-banded karyotype in Quercus L. (oak) Silvae Genetica. 1990;39:216–219. [Google Scholar]
  • 60.Paule J, et al. Chromosome numbers of the flora of Germany – a new online database of georeferenced chromosome counts and flow cytometric ploidy estimates. Plant Syst. Evol. 2017;303:1123–1129. doi: 10.1007/s00606-016-1362-y. [DOI] [Google Scholar]
  • 61.Pinkava DJ, McLeod MG. Chromosome numbers in some cacti of western North America. Brittonia. 1971;23:171–176. doi: 10.2307/2805433. [DOI] [Google Scholar]
  • 62.Rice A, et al. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 2014;206:19–26. doi: 10.1111/nph.13191. [DOI] [PubMed] [Google Scholar]
  • 63.Dos Santos AC. Algumas contagens de Cromosomas nos Géneros Genista L. e Cytisus L. Boletim da Sociedade Broteriana. 1944;19:519–522. [Google Scholar]
  • 64.Scaltsoyiannes A, Tsaktsira M, Drouzas AD. Allozyme differentiation in the Mediterranean firs (Abies, Pinaceae). A first comparative study with phylogenetic implications. Plant Syst. Evol. 1999;216:289–307. doi: 10.1007/BF01084404. [DOI] [Google Scholar]
  • 65.Sennikov AN, Kurtto A. A phylogenetic checklist of Sorbus s.l. (Rosaceae) in Europe. Memoranda Societatis pro Fauna et Flora Fennica. 2017;93:1–78. [Google Scholar]
  • 66.Sochor M, Trávníček B, Király G. Ploidy level variation in the genus Rubus in the Pannonian Basin and the northern Balkans, and evolutionary implications. Plant Syst. Evol. 2019;305:611–626. doi: 10.1007/s00606-019-01593-3. [DOI] [Google Scholar]
  • 67.Sramkó G, et al. Molecular phylogenetics, seed morphometrics, chromosome number evolution and systematics of European Elatine L. (Elatinaceae) species. PeerJ. 2016;4:e2800. doi: 10.7717/peerj.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Siljak, S. Basic data on the chromosome complement of the Acer tataricum L. I.er Symposium of Biosystematic in Yougoslavia Proceedings 139–144 (1971).
  • 69.Zaldos V, Papes D, Brown SC, Panaus O, Siljak-Yakovlev S. Genome size and base composition of seven Quercus species: inter and intra-population variation. Genome. 1998;41:162–168. doi: 10.1139/g98-006. [DOI] [Google Scholar]
  • 70.Horváth, F. et al. Flóra Adatbázis 1.2. Taxon-lista és attribútum állomány. [Flora database 1.2, List of taxa and attributes.] (MTA ÖBKI 1995).
  • 71.Bagi I, Székely Á. Az Elymus elongatus (Host) Runemark, magas tarackbúza előfordulása a Kiskunság déli részén - a korábbi lelőhelyek rövid áttekintés. Bot. Közl. 2006;93:77–92. [Google Scholar]
  • 72.Barina Z, Somogyi G, Pifkó D. Typification of names in the Dianthus plumarius group in the Carpatho-Pannonian region. Taxon. 2020;69:161–169. doi: 10.1002/tax.12186. [DOI] [Google Scholar]
  • 73.Bátori Z, Erdős L, Somlyay L. Euphorbia prostrata (Euphorbiaceae), a new alien in the Carpathian Basin. Acta Bot. Hung. 2012;54:235–243. doi: 10.1556/ABot.54.2012.3-4.2. [DOI] [Google Scholar]
  • 74.Bauer N, Somlyay L. A Crepis mollis (Jacq.) Asch. subsp. hieracioides (Waldst. & Kit.) Domin újrafelfedezése Magyarországon/Rediscovery of Crepis mollis (Jacq.) Asch. subsp. hieracioides (Waldst. & Kit.) Domin in Hungary. Kitaibelia. 2015;20:150–156. doi: 10.17542/kit.20.150. [DOI] [Google Scholar]
  • 75.Czimber G, Varga Z, Radics L. Új mediterrán fajok a hazai gyomflórában: a fehér kányazsázsa (Diplotaxis erucoides (Torner) DC.) Növénytermelés. 2008;57:253–265. [Google Scholar]
  • 76.Csecserits A, Barabás S. A labodalevelű szárnyaslibatop (Cycloloma atriplicifolia) újabb előfordulása a Kiskunság északi részén. Kitaibelia. 2020;25:107–108. doi: 10.17542/kit.25.107. [DOI] [Google Scholar]
  • 77.Csiky J. A Cuscuta approximata Babington Magyarországon (Cuscutaceae Dumort.) Kitaibelia. 2003;8:75–80. [Google Scholar]
  • 78.Csiky J, et al. A Cirsium boujartii (Pill. et Mitterp.) Schultz Bip. újrafelfedezése Magyarországon/Rediscovery of Cirsium boujartii (Pill. et Mitterp.) Schultz Bip. in Hungary. Flora Pannonica. 2005;3:69–78. [Google Scholar]
  • 79.Csiky J, Mesterházy A, Szalontai B, Pótó-Oláh E. A morphological study of Ceratophyllum tanaiticum, a species new to the flora of Hungary. Preslia. 2010;82:247–259. [Google Scholar]
  • 80.Dancza I, Hoffmann ZP, Doma C. Cyperus esculentus (yellow nutsedge) - a new weed in Hungary. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. 2004;19:223–229. [Google Scholar]
  • 81.Dítě D, Eliáš P, Király G. Dactylorhiza lapponica (Laest. ex Hartm.) Soó, a new taxon for Hungary. Flora Pannonica. 2006;4:91–97. [Google Scholar]
  • 82.Fekete R, Mesterházy A, Valkó O, Molnár V. A. A hitchhiker from the beach: the spread of the maritime halophyte Cochlearia danica along salted continental roads. Preslia. 2018;90:23–37. doi: 10.23855/preslia.2018.023. [DOI] [Google Scholar]
  • 83.Hroudová Z, Zákravský P, Ducháček M, Marhold K. Taxonomy, distribution and ecology of Bolboschoenus in Europe. Annales Botanici Fennici. 2007;44:81–102. [Google Scholar]
  • 84.Kerényi-Nagy, V. in Magyarország ritka fa- és cserjefajainak atlasza. (ed. Bartha D.) Piros áltermésű ritka galagonyafajok – Crataegus spp. (Kossuth Kiadó, 2012).
  • 85.Király G. Kiegészítések a magyar adventív-flóra ismeretéhez II. Az Epilobium ciliatum Rafin. Magyarországon. Flora Pannonica. 2005;3:27–39. [Google Scholar]
  • 86.Király G, Király A. Az Agrimonia procera Wallr. előfordulása Magyarországon. Flora Pannonica. 2004;2:7–24. [Google Scholar]
  • 87.Király G, Király A. Adatok és kiegészítések a magyar flóra ismeretéhez III. Botanikai Közlemények. 2018;105:27–96. doi: 10.17716/BotKozlem.2018.105.1.27. [DOI] [Google Scholar]
  • 88.Király, G., Steták, D. & Bányász, Á. in Biological Invasions – from Ecology to Conservation (eds. Rabitsch, W., Essl F. & Klingenstein F.) Spread of invasive macrophytes in Hungary (Neobiota 7, 123-130, 2008).
  • 89.Király G, et al. Remote locality of the littoral Carex extensa (Cyperaceae) in Hungary — long distance dispersal from coastal to inland salt marshes. Biologia. 2013;68:872–878. doi: 10.2478/s11756-013-0219-x. [DOI] [Google Scholar]
  • 90.Király G, et al. Taxonomical and chorological notes 10 (98–110) Stud. Bot. Hung. 2019;50:391–407. doi: 10.17110/StudBot.2019.50.2.391. [DOI] [Google Scholar]
  • 91.Korda M. Újabb adat a magyar adventívflóra ismeretéhez: az Allium paradoxum (M. Bieb.) G. Don 1827 Magyarországon. Kitaibelia. 2013;18:31–34. [Google Scholar]
  • 92.Kovács D, Mesterházy A. A Ceratochloa (DC. et P. Beauv.) Hack. alnemzetség (Bromus L., Poaceae) hazai története és elterjedése. Kitaibelia. 2015;20:44–47. doi: 10.17542/kit.20.44. [DOI] [Google Scholar]
  • 93.Kun A. Az Apium repens császártöltési állományának monitorozása (2006–2015) Kitaibelia. 2019;24:1–8. doi: 10.17542/kit.24.1. [DOI] [Google Scholar]
  • 94.Mandák B, Prach K. Cycloloma atriplicifolia, a new alien species in Hungary. Preslia. 2001;73:153–160. [Google Scholar]
  • 95.Mesterházy A, Király G, Wallnöfer B. On the occurrence of Carex randalpina B. Wallnöfer (Cyperaceae) in Hungary. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie. 2011;112:177–180. [Google Scholar]
  • 96.Mesterházy A, et al. Taxonomical and chorological notes 5 (59–68) Stud. Bot. Hung. 2017;48:263–275. doi: 10.17110/StudBot.2017.48.2.263. [DOI] [Google Scholar]
  • 97.Molnár V., A. Magyarország orchideáinak atlasza (Kossuth Kiadó, 2011).
  • 98.Molnár C, Juhász M. Az alacsony libatop (Chenopodium pumilio R.Br.) Zuglóban és új adatok Északkelet-Magyarország idegenhonos fajainak elterjedéséhez. Kitaibelia. 2016;21:221–226. doi: 10.17542/kit.21.221. [DOI] [Google Scholar]
  • 99.Mosolygó-L Á, et al. Molecular genetic evidence for allotetraploid hybrid speciation in the genus Crocus L. (Iridaceae) Phytotaxa. 2016;258:121–136. doi: 10.11646/phytotaxa.258.2.2. [DOI] [Google Scholar]
  • 100.Pal RW. Echinaria capitata (Seslerieae, poaceae), a new grass species for the Hungarian flora. Acta Bot. Hung. 2011;53:175–180. doi: 10.1556/ABot.53.2011.1-2.17. [DOI] [Google Scholar]
  • 101.Partosfalvi P, Madarász J, Dancza I. Az ázsiai gyapjúfű (Eriochloa villosa (Thunb.) Kunth) megjelenése Magyarországon. Növényvédelem. 2008;44:297–304. [Google Scholar]
  • 102.Pifkó D. Adatok a hazai Chamaecytisus fajok ismeretéhez I. Flora Pannonica. 2004;2:25–36. [Google Scholar]
  • 103.Pinke G, Czimber G, Pál R. A Chorispora tenella (Pall.) DC. a Szigetközben. Kitaibelia. 1999;4:287–288. [Google Scholar]
  • 104.Pinke G, Pál R, Király G, Szendrődi V, Mesterházy A. The occurrence and habitat conditions of Anthoxanthum puelii Lecoq & Lamotte and other Atlantic-Mediterranean weed species in Hungary. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft. 2006;20:587–596. [Google Scholar]
  • 105.Pinke G, Molnár S, Garamvölgyi V, Barina Z. The first occurrence of Euphorbia davidii in Hungary. (Új gyomnövény Magyarországon a Dávid-Kutyatej (Euphorbia davidii Subils)) Növényvédelem. 2012;48:117–120. [Google Scholar]
  • 106.Simon, T. A magyarországi edényes flóra határozója (Tankönyvkiadó, 1992).
  • 107.Simon T. A havasi varázslófű (Circaea alpina L.) hazai cönológiája. Bot. Közl. 2001;88:107–116. [Google Scholar]
  • 108.Simon T, Podani J. Régi-új faj, az Euphorbia segetalis L. a magyar flórában. Kitaibelia. 2007;12:121–123. [Google Scholar]
  • 109.Solymosi P. A magyarországi adventív flóra lappangó faja a sárgás varjúláb [Coronopus didymus (L.) Smith] Növényvédelem. 2016;52:598–599. [Google Scholar]
  • 110.Somlyay L. Occurrence of Chamaesyce glyptosperma, and a survey of the genus Chamaesyce (Euphorbiaceae) in Hungary. Annales historico-naturales Musei nationalis Hungarici. 2009;101:23–32. [Google Scholar]
  • 111.Štech M, et al. Calamagrostis purpurea (Poaceae) – A long neglected boreal element, new for the flora of Austria. Neilreichia - Zeitschrift für Pflanzensystematik und Floristik Österreichs. 2020;11:133–152. [Google Scholar]
  • 112.Takács A, et al. Taxonomical and chorological notes 3 (28–37) Stud. Bot. Hung. 2016;47:345–357. [Google Scholar]
  • 113.Vidéki R. Cycloloma atriplicifolia (Spreng.) J. M. Coulter és Salsola collina Pallas Magyarországon/Cycloloma atriplicifolia (Spreng.) J. M. Coulter und Salsola collina Pallas in Ungarn. Flora Pannonica. 2005;3:121–134. [Google Scholar]
  • 114.Virók V, Farkas R. Új növényfaj a hazai edényes flórában: a Haller-kövifoszlár (Cardaminopsis halleri (L.) Hayek) Kitaibelia. 2008;13:29–33. [Google Scholar]
  • 115.Vojtkó A. Mirigyes fodorka (Asplenium lepidum C. Presl.) előfordulása a Bükk-hegységben. Kitaibelia. 1996;1:25. [Google Scholar]
  • 116.Wilhalm T. Digitaria ciliaris in Europe. Willdenowia. 2009;39:247–259. doi: 10.3372/wi.39.39203. [DOI] [Google Scholar]
  • 117.Wirth T, Gyergyák K. Az Asparagus verticillatus L. Magyarországon. Kitaibelia. 2015;20:38–43. doi: 10.17542/kit.20.38. [DOI] [Google Scholar]
  • 118.Wolf MA, Király G. Euphorbia serpens (Euphorbiaceae), a new alien apecies in Hungary. Acta Bot. Hung. 2014;56:243–250. doi: 10.1556/ABot.56.2014.1-2.16. [DOI] [Google Scholar]
  • 119.Csiky J, et al. Checklit of alien vascular plants in Hungary and their invasion biological characteristics. Acta Bot. Hung. 2023;65:53–72. doi: 10.1556/034.65.2023.1-2.3. [DOI] [Google Scholar]
  • 120.Király G. Vörös Lista. A magyarországi edényes flóra veszélyeztetett fajai./Red List of the Vascular Flora of Hungary. Sopron, 2007)
  • 121.Simon T. A hazai edényes flóra természetvédelmi-érték besorolása. Abstracta Botanica. 1988;12:1–23. [Google Scholar]
  • 122.Ellenberg, H. et al. Zeigerwerte von pflanzen in Mitteleuropa. Scripta Geobotanica18 (1991).
  • 123.Zólyomi B, et al. Einreihung von 1400 Arten der ungarischen Flora in ökologische Gruppen nach TWR-Zahlen. Fragm. Bot. Mus. Hist. Nat. Hung. 1967;4:101–142. [Google Scholar]
  • 124.Lhotsky B, Csecserits A, Kovács B, Botta-Dukát Z. New plant trait records of the Hungarian flora. Acta Bot. Hung. 2016;58:397–400. doi: 10.1556/ABot.58.2016.3-4.8. [DOI] [Google Scholar]
  • 125.E-Vojtkó A, et al. Leaf trait records of vascular plant species in the Pannonian flora with special focus on endemics and rarities. Folia Geobot. 2020;55:73–79. doi: 10.1007/s12224-020-09363-7. [DOI] [Google Scholar]
  • 126.Gyalus A, et al. Plant trait records of the Hungarian and Serbian flora and methodological description of some hardly measurable plant species. Acta Bot. Hung. 2022;64:451–454. doi: 10.1556/034.64.2022.3-4.14. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Citations

  1. Sonkoly J, 2023. PADAPT 1.0 – the Pannonian Dataset of Plant Traits. figshare. [DOI] [PMC free article] [PubMed]

Data Availability Statement

No code was used to generate or process the data presented in this manuscript.


Articles from Scientific Data are provided here courtesy of Nature Publishing Group

RESOURCES