Abstract
Plants respond to high temperature stress by the synthesis of an assortment of heat shock proteins that have been correlated with an acquired thermal tolerance to otherwise lethal temperatures. This study was conducted to determine whether genotypic differences in acquired thermal tolerance were associated with changes in the pattern of heat shock protein synthesis. The pattern of heat shock protein synthesis was analyzed by 35S-methionine incorporation in wheat (Triticum aestivum L.) varieties exhibiting distinct levels of acquired thermal tolerance. Significant quantitative differences between the cultivars Mustang and Sturdy were observed in the HSP exhibiting apparent molecular weights of 16, 17, 22, 26, 33, and 42 Kilodaltons. Genotypic differences in the synthesis of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase were observed at 34°C. Two-dimensional electrophoretic analysis revealed unique proteins (16, 17, and 26 kilodaltons) in the thermal tolerant variety Mustang that were absent in the more thermal sensitive variety Sturdy. These results provide a correlation between the synthesis of specific low molecular weight heat shock proteins and the degree of thermal tolerance expressed following exposure to elevated temperatures.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baszczynski C. L., Walden D. B., Atkinson B. G. Regulation of gene expression in corn (Zea Mays L.) by heat shock. Can J Biochem. 1982 May;60(5):569–579. doi: 10.1139/o82-070. [DOI] [PubMed] [Google Scholar]
- Bennett N., Loomis W. E. TETRAZOLIUM CHLORIDE AS A TEST REAGENT FOR FREEZING INJURY OF SEED CORN. Plant Physiol. 1949 Jan;24(1):162–174. doi: 10.1104/pp.24.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke J. J., Hatfield J. L., Klein R. R., Mullet J. E. Accumulation of heat shock proteins in field-grown cotton. Plant Physiol. 1985 Jun;78(2):394–398. doi: 10.1104/pp.78.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper P., Ho T. H. Heat shock proteins in maize. Plant Physiol. 1983 Feb;71(2):215–222. doi: 10.1104/pp.71.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper P., Ho T. H. Intracellular localization of heat shock proteins in maize. Plant Physiol. 1987 Aug;84(4):1197–1203. doi: 10.1104/pp.84.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Key J. L., Lin C. Y., Chen Y. M. Heat shock proteins of higher plants. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3526–3530. doi: 10.1073/pnas.78.6.3526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimpel J. A., Key J. L. Presence of Heat Shock mRNAs in Field Crown Soybeans. Plant Physiol. 1985 Nov;79(3):672–678. doi: 10.1104/pp.79.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lin C. Y., Roberts J. K., Key J. L. Acquisition of Thermotolerance in Soybean Seedlings : Synthesis and Accumulation of Heat Shock Proteins and their Cellular Localization. Plant Physiol. 1984 Jan;74(1):152–160. doi: 10.1104/pp.74.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
- Nover L., Scharf K. D. Synthesis, modification and structural binding of heat-shock proteins in tomato cell cultures. Eur J Biochem. 1984 Mar 1;139(2):303–313. doi: 10.1111/j.1432-1033.1984.tb08008.x. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Skinner M. K., Griswold M. D. Fluorographic detection of radioactivity in polyacrylamide gels with 2,5-diphenyloxazole in acetic acid and its comparison with existing procedures. Biochem J. 1983 Jan 1;209(1):281–284. doi: 10.1042/bj2090281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steponkus P. L. Effect of freezing on dehydrogenase activity and reduction of triphenyl tetrazolium chloride. Cryobiology. 1971 Dec;8(6):570–573. doi: 10.1016/0011-2240(71)90009-5. [DOI] [PubMed] [Google Scholar]
- Vierling E., Key J. L. Ribulose 1,5-Bisphosphate Carboxylase Synthesis during Heat Shock. Plant Physiol. 1985 May;78(1):155–162. doi: 10.1104/pp.78.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]