Abstract
The pH-dependence of acid-induced growth in excised segments of Avena sativa coleoptiles has been reinvestigated in the pH range 3 to 7. In contrast to previous reports (e.g. DL Rayle [1973] Planta 114: 63-73), only acidic buffers with a pH below 5.0 induce an extension response. A pH of 3.5 to 4.0 is required to mimic auxin-mediated growth. Very similar pH-response curves are obtained with both intact (abraded) and peeled coleoptiles. These results agree with the recent finding of a similarly low sensitivity to protons in maize coleoptiles. It is shown that the apparently much higher sensitivity to protons previously reported for peeled Avena coleoptiles is due to incubating the tissue in buffer of pH 6.8 between peeling and measuring the effect of acidic buffers. Neutral pH reversibly inhibits the spontaneous extension burst originating on release from tissue tension after removing the epidermis. Reversal of this inhibition can be achieved by buffers of pH 5.0 to 6.0 (or distilled water), thereby simulating an acid-induced growth response in this pH range. It is concluded that true acid-induced wall-loosening generally does not take place above pH 5.0 and that a pH considerably below 4.0 is required in order to stimulate growth to an extent comparable to that obtained in response to auxin. The “acid-growth theory,” which requires an acid-mediated loosening of the cell wall in the pH range 5 to 6, this pH being established by auxin-induced proton excretion, can therefore also not be substantiated in Avena.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cleland R. E., Cosgrove D., Tepfer M. Long-term acid-induced wall extension in an in-vitro system. Planta. 1987;170:379–385. [PubMed] [Google Scholar]
- Evans M. L. The action of auxin on plant cell elongation. CRC Crit Rev Plant Sci. 1985;2(4):317–365. doi: 10.1080/07352688509382200. [DOI] [PubMed] [Google Scholar]
- Jacobs M., Ray P. M. Rapid Auxin-induced Decrease in Free Space pH and Its Relationship to Auxin-induced Growth in Maize and Pea. Plant Physiol. 1976 Aug;58(2):203–209. doi: 10.1104/pp.58.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mentze J., Raymond B., Cohen J. D., Rayle D. L. Auxin-induced H Secretion in Helianthus and Its Implications. Plant Physiol. 1977 Oct;60(4):509–512. doi: 10.1104/pp.60.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rayle D. L., Cleland R. E. Evidence that Auxin-induced Growth of Soybean Hypocotyls Involves Proton Excretion. Plant Physiol. 1980 Sep;66(3):433–437. doi: 10.1104/pp.66.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rayle D. L., Cleland R. Control of plant cell enlargement by hydrogen ions. Curr Top Dev Biol. 1977;11:187–214. doi: 10.1016/s0070-2153(08)60746-2. [DOI] [PubMed] [Google Scholar]