Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Jul;90(3):899–906. doi: 10.1104/pp.90.3.899

Cytokinin Oxidase from Wheat

Partial Purification and General Properties

Michel Laloue 1,1, J Eugene Fox 1,2
PMCID: PMC1061818  PMID: 16666895

Abstract

As part of the study of the possible role(s) of CBF-1, a cytokinin-binding protein abundant in wheat embryo, a cytokinin oxidase was found in wheat (Triticum aestivum L.) germ and partially purified by conventional purification techniques and high performance chromatofocusing. This preparation catalyzes conversion of N6-(Δ2-isopentenyl)adenosine to adenosine at a Vmax of 0.4 nanomol per milligram protein per minute at 30°C and pH 7.5, the Km being 0.3 micromolar. This high affinity and the apparent molecular weight of 40,000 estimated by high performance gel permeation on a Spherogel TSK-3000 SW column indicate that this enzyme is different from other cytokinin oxidases previously reported. Oxygen is required for the reaction, as for other cytokinin oxidases already described. N6-(Δ2-isopentenyl)adenine and zeatin riboside are also degraded, but N6-(Δ2-isopentenyl)adenosine-5′-monophosphate is apparently not a substrate. Benzyladenine is degraded, but to a small extent, and it inhibits slightly the degradation of N6-(Δ2-isopentenyl)adenosine. The degradation of N6-(Δ2-isopentenyl)adenosine is strongly inhibited by diphenylurea and its highly active derivative N-(2-chloro-4-pyridyl)-N′-phenylurea.

Full text

PDF
899

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brinegar A. C., Stevens A., Fox J. E. Biosynthesis and Degradation of a Wheat Embryo Cytokinin-Binding Protein during Embryogenesis and Germination. Plant Physiol. 1985 Nov;79(3):706–710. doi: 10.1104/pp.79.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chatfield J. M., Armstrong D. J. Cytokinin Oxidase from Phaseolus vulgaris Callus Tissues : Enhanced in Vitro Activity of the Enzyme in the Presence of Copper-Imidazole Complexes. Plant Physiol. 1987 Jul;84(3):726–731. doi: 10.1104/pp.84.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chatfield J. M., Armstrong D. J. Regulation of Cytokinin Oxidase Activity in Callus Tissues of Phaseolus vulgaris L. cv Great Northern. Plant Physiol. 1986 Feb;80(2):493–499. doi: 10.1104/pp.80.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. M., Eckert R. L. Phosphorylation of cytokinin by adenosine kinase from wheat germ. Plant Physiol. 1977 Mar;59(3):443–447. doi: 10.1104/pp.59.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dyson W. H., Fox J. E., McChesney J. D. Short term metabolism of urea and purine cytokinins. Plant Physiol. 1972 Apr;49(4):506–513. doi: 10.1104/pp.49.4.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Laloue M., Terrine C., Guern J. Cytokinins: Metabolism and Biological Activity of N-(Delta-Isopentenyl)adenosine and N-(Delta-Isopentenyl)adenine in Tobacco Cells and Callus. Plant Physiol. 1977 Mar;59(3):478–483. doi: 10.1104/pp.59.3.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mok M. C., Mok D. W., Dixon S. C., Armstrong D. J., Shaw G. Cytokinin structure-activity relationships and the metabolism of N-(delta-isopentenyl)adenosine-8-C in phaseolus callus tissues. Plant Physiol. 1982 Jul;70(1):173–178. doi: 10.1104/pp.70.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Paces V., Werstiuk E., Hall R. H. Conversion of N-(Delta-Isopentenyl)adenosine to Adenosine by Enzyme Activity in Tobacco Tissue. Plant Physiol. 1971 Dec;48(6):775–778. doi: 10.1104/pp.48.6.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Terrine C., Laloue M. Kinetics of N-(Delta-Isopentenyl)Adenosine Degradation in Tobacco Cells: EVIDENCE OF A REGULATORY MECHANISM UNDER THE CONTROL OF CYTOKININS. Plant Physiol. 1980 Jun;65(6):1090–1095. doi: 10.1104/pp.65.6.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Whitty C. D., Hall R. H. A cytokinin oxidase in Zea mays. Can J Biochem. 1974 Sep;52(9):789–799. doi: 10.1139/o74-112. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES