Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Jul;90(3):1108–1114. doi: 10.1104/pp.90.3.1108

Role of Calcium in Phytochrome-Controlled Nyctinastic Movements of Albizzia lophantha Leaflets

Luisa Moysset 1,2,1, Esther Simon 1,2
PMCID: PMC1061851  PMID: 16666859

Abstract

The involvement of Ca2+ on phytochrome-controlled nyctinastic closure in Albizzia lophantha has been studied by testing the effect of the calcium ionophore 6S-[6α(2S*,3S*),8β(R*),9β,11α]-5- methyl-amino)-2-[[3,9,11-trimethyl-8-[-1-methyl-2-oxo-2-(1H-pyrrol-2-yl) ethyl]-1,7-dioxaspiro[5.5]-undec-2yl] methyl]-4-benzoxazolecarboxylic acid (A23187) and the intracellular calcium antagonist 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8). An external supply of Ca2+ or calcium ionophore A23187 to the Albizzia leaflets emulates the effect of red light irradiation and counteracts the inhibitory effect of far red light. The intracellular calcium antagonist TMB-8 supplied to Albizzia leaflets inhibits the effect of red light, but had no effect on far red irradiated plants. This suggests a dependence between phytochrome action and intracellular free Ca2+. We suggest that calcium acts as a phytochrome messenger on control of ion fluxes that drive turgor changes in pulvinular motor cells.

Full text

PDF
1108

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiou C. Y., Malagodi M. H. Studies on the mechanism of action of a new Ca-2+ antagonist, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br J Pharmacol. 1975 Feb;53(2):279–285. doi: 10.1111/j.1476-5381.1975.tb07359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Feinman R. D., Detwiler T. C. Platelet secretion induced by divalent cation ionophores. Nature. 1974 May 10;249(453):172–173. doi: 10.1038/249172a0. [DOI] [PubMed] [Google Scholar]
  3. Hale C. C., Roux S. J. Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells. Plant Physiol. 1980 Apr;65(4):658–662. doi: 10.1104/pp.65.4.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hillman W. S., Koukkari W. L. Phytochrome Effects in the Nyctinastic Leaf Movements of Albizzia julibrissin and Some Other Legumes. Plant Physiol. 1967 Oct;42(10):1413–1418. doi: 10.1104/pp.42.10.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Iglesias A., Satter R. L. H fluxes in excised samanea motor tissue : I. Promotion by light. Plant Physiol. 1983 Jun;72(2):564–569. doi: 10.1104/pp.72.2.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kafka M. S., Holz R. W. Ionophores X537A and A23187. Effects on the permeability of lipid bimolecular membranes to dopamine and calcium. Biochim Biophys Acta. 1976 Feb 19;426(1):31–37. doi: 10.1016/0005-2736(76)90426-0. [DOI] [PubMed] [Google Scholar]
  7. Morse M. J., Crain R. C., Satter R. L. Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7075–7078. doi: 10.1073/pnas.84.20.7075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Morse M. J., Crain R. C., Satter R. L. Phosphatidylinositol Cycle Metabolites in Samanea saman Pulvini. Plant Physiol. 1987 Mar;83(3):640–644. doi: 10.1104/pp.83.3.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Reed P. W. Effects of divalent cation ionophore A23187 on potassium permeability of rat erythrocytes. J Biol Chem. 1976 Jun 10;251(11):3489–3494. [PubMed] [Google Scholar]
  10. Roux S. J., McEntire K., Slocum R. D., Cedel T. E., Hale C. C. Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats. Proc Natl Acad Sci U S A. 1981 Jan;78(1):283–287. doi: 10.1073/pnas.78.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Satter R. L., Applewhite P. B., Galston A. W. Rhythmic potassium flux in albizzia: effect of aminophylline, cations, and inhibitors of respiration and protein synthesis. Plant Physiol. 1974 Sep;54(3):280–285. doi: 10.1104/pp.54.3.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Satter R. L., Galston A. W. Phytochrome-controlled Nyctinasty in Albizzia julibrissin: III. Interactions between an Endogenous Rhythm and Phytochrome in Control of Potassium Flux and Leaflet Movement. Plant Physiol. 1971 Dec;48(6):740–746. doi: 10.1104/pp.48.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Satter R. L., Schrempf M., Chaudhri J., Galston A. W. Phytochrome and Circadian Clocks in Samanea: Rhythmic Redistribution of Potassium and Chloride within the Pulvinus during Long Dark Periods. Plant Physiol. 1977 Feb;59(2):231–235. doi: 10.1104/pp.59.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schumaker K. S., Sze H. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J Biol Chem. 1987 Mar 25;262(9):3944–3946. [PubMed] [Google Scholar]
  15. Schwartz A. Role of Ca and EGTA on Stomatal Movements in Commelina communis L. Plant Physiol. 1985 Dec;79(4):1003–1005. doi: 10.1104/pp.79.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Serlin B. S., Roux S. J. Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6368–6372. doi: 10.1073/pnas.81.20.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simon E., Satter R. L., Galston A. W. Circadian Rhythmicity in Excised Samanea Pulvini: II. Resetting the Clock by Phytochrome Conversion. Plant Physiol. 1976 Sep;58(3):421–425. doi: 10.1104/pp.58.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wayne R., Hepler P. K. Red Light Stimulates an Increase in Intracellular Calcium in the Spores of Onoclea sensibilis. Plant Physiol. 1985 Jan;77(1):8–11. doi: 10.1104/pp.77.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES