Abstract
When Brassica nigra leaf petiole suspension cells were subjected to 7 days of inorganic phosphate (Pi) starvation the extractable activity of: (a) pyrophosphate:fructose 6-phosphate 1-phosphotransferase, nonphosphorylating NADP-glyceraldehyde 3-phosphate dehydrogenase, phosphoenolpyruvate phosphatase, and phosphoenolpyruvate carboxylase increased at least fivefold, (b) phosphorylating NAD-glyceraldehyde 3-phosphate dehydrogenase decreased about sixfold, and (c) ATP:fructose 6-phosphate 1-phosphotransferase, 3-phosphoglycerate kinase, pyruvate kinase, or NAD malic enzyme was not altered. Pi deprivation also resulted in significant reductions in extractable levels of Pi, ATP, ADP, fructose 2,6-bisphosphate, and soluble protein, but caused a sixfold elevation in free amino acid concentrations. No change in inorganic pyrophosphate concentration was observed following Pi starvation. It is hypothesized that pyrophosphate:fructose 6-phosphate 1-phosphotransferase, nonphosphorylating NADP-glyceraldehyde 3-phosphate dehydrogenase, and phosphoenolpyruvate phosphatase bypass nucleotide phosphate or Pi-dependent glycolytic reactions during sustained periods of Pi depletion.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ball K. L., ap Rees T. Fructose 2,6-bisphosphate and the climacteric in bananas. Eur J Biochem. 1988 Nov 15;177(3):637–641. doi: 10.1111/j.1432-1033.1988.tb14417.x. [DOI] [PubMed] [Google Scholar]
- Duff S. M., Lefebvre D. D., Plaxton W. C. Purification and Characterization of a Phosphoenolpyruvate Phosphatase from Brassica nigra Suspension Cells. Plant Physiol. 1989 Jun;90(2):734–741. doi: 10.1104/pp.90.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly G. J., Gibbs M. Nonreversible d-Glyceraldehyde 3-Phosphate Dehydrogenase of Plant Tissues. Plant Physiol. 1973 Aug;52(2):111–118. doi: 10.1104/pp.52.2.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kombrink E., Kruger N. J., Beevers H. Kinetic properties of pyrophosphate:fructose-6-phosphate phosphotransferase from germinating castor bean endosperm. Plant Physiol. 1984 Feb;74(2):395–401. doi: 10.1104/pp.74.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moorhead G. B., Plaxton W. C. Binding of glycolytic enzymes to a particulate fraction in carrot and sugar beet storage roots : dependence on metabolic state. Plant Physiol. 1988 Feb;86(2):348–351. doi: 10.1104/pp.86.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stitt M. Fructose 2,6-bisphosphate and plant carbohydrate metabolism. Plant Physiol. 1987 Jun;84(2):201–204. doi: 10.1104/pp.84.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stitt M. Product inhibition of potato tuber pyrophosphate:fructose-6-phosphate phosphotransferase by phosphate and pyrophosphate. Plant Physiol. 1989 Feb;89(2):628–633. doi: 10.1104/pp.89.2.628. [DOI] [PMC free article] [PubMed] [Google Scholar]