Abstract
The activity of superoxide dismutase was investigated in needles of spruce trees. To obtain maximum activity, needles were homogenized in the presence of Triton X-100 and polyvinylpyrrolidone. Superoxide dismutase activity was measured in dialyzed extracts with a modified epinephrine assay (HP Misra, I Fridovich [1972] J Biol Chem 247: 3170-3175) at pH 10.2. The extracts contained 70 to 120 units of superoxide dismutase per milligram protein. One unit of superoxide dismutase was completely inhibited in the presence of 20 micromolar NaCN. On native polyacrylamide gels three electromorphs were visualized after staining for activity. All three species were sensitive to CN− and H2O2 and were therefore assumed to be Cu/Zn-superoxide dismutases. Superoxide dismutase activity was dependent on the age of the needles and declined by approximately 25% within 3 to 4 years.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- Beyer W. F., Jr, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987 Mar;161(2):559–566. doi: 10.1016/0003-2697(87)90489-1. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Dunlap P. V., Steinman H. M. Strain variation in bacteriocuprein superoxide dismutase from symbiotic Photobacterium leiognathi. J Bacteriol. 1986 Feb;165(2):393–398. doi: 10.1128/jb.165.2.393-398.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forman H. J., Fridovich I. Superoxide dismutase: a comparison of rate constants. Arch Biochem Biophys. 1973 Sep;158(1):396–400. doi: 10.1016/0003-9861(73)90636-x. [DOI] [PubMed] [Google Scholar]
- Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
- Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975 Dec 2;14(24):5294–5299. doi: 10.1021/bi00695a010. [DOI] [PubMed] [Google Scholar]
- Jackson C., Dench J., Moore A. L., Halliwell B., Foyer C. H., Hall D. O. Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. Eur J Biochem. 1978 Nov 15;91(2):339–344. doi: 10.1111/j.1432-1033.1978.tb12685.x. [DOI] [PubMed] [Google Scholar]
- Jouini M., Lapluye G., Huet J., Julien R., Ferradini C. Catalytic activity of a copper(II)-oxidized glutathione complex on aqueous superoxide ion dismutation. J Inorg Biochem. 1986 Apr;26(4):269–280. doi: 10.1016/0162-0134(86)80051-4. [DOI] [PubMed] [Google Scholar]
- Klug D., Rabani J., Fridovich I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem. 1972 Aug 10;247(15):4839–4842. [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem. 1969 Nov 25;244(22):6056–6063. [PubMed] [Google Scholar]
- Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972 May 25;247(10):3170–3175. [PubMed] [Google Scholar]
- Roth E. F., Jr, Gilbert H. S. The pyrogallol assay for superoxide dismutase: absence of a glutathione artifact. Anal Biochem. 1984 Feb;137(1):50–53. doi: 10.1016/0003-2697(84)90344-0. [DOI] [PubMed] [Google Scholar]
- Rotilio G., Bray R. C., Fielden E. M. A pulse radiolysis study of superoxide dismutase. Biochim Biophys Acta. 1972 May 12;268(2):605–609. doi: 10.1016/0005-2744(72)90359-2. [DOI] [PubMed] [Google Scholar]
- Ysebaert-Vanneste M., Vanneste W. H. Quantitative resolution of Cu,Zn- and Mn-superoxide dismutase activities. Anal Biochem. 1980 Sep 1;107(1):86–95. doi: 10.1016/0003-2697(80)90496-0. [DOI] [PubMed] [Google Scholar]