Abstract
The uptake of acidic and basic sugar derivatives in Lemna gibba L. was studied. Uronic acids applied to the experimental solution (50 millimolar) induced a small decrease of the membrane potential (10 ± 1 millivolt galacturonic acid, and 20 ± 4 millivolt glucuronic acid). After incubation of the plants in a 0.1 millimolar solution of these substrates, no decrease in the concentration of reducing groups in the external solution was detected. Respiration increased by 31% with 50 millimolar galacturonic acid, whereas no effect was found with the same concentration of glucuronic acid. Glucosamine caused a considerable concentration-dependent membrane depolarization. (14C)glucosamine uptake followed Michaelis-Menten kinetics together with a linear component. Influx of this substrate was inhibited by glucose but the type of competition could not be clearly distinguished. Glucosamine, 50 millimolar, inhibited the respiration rate by 30%. The glucosamine uptake was pH-dependent, with maximum uptake at around pH 7. Lack of enhancement of uptake by low pH as well as the permanent membrane depolarization suggest a uniport mechanism for the charged species of the substrate and an electroneutral diffusion of the uncharged species.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Delrot S., Bonnemain J. L. Involvement of Protons as a Substrate for the Sucrose Carrier during Phloem Loading in Vicia faba Leaves. Plant Physiol. 1981 Mar;67(3):560–564. doi: 10.1104/pp.67.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higinbotham N., Etherton B., Foster R. J. Effect of External K, NH(4), Na, Ca, Mg, and H Ions on the Cell Transmembrane Electropotential of Avena Coleoptile. Plant Physiol. 1964 Mar;39(2):196–203. doi: 10.1104/pp.39.2.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinraide T. B., Etherton B. Electrical evidence for different mechanisms of uptake for basic, neutral, and acidic amino acids in oat coleoptiles. Plant Physiol. 1980 Jun;65(6):1085–1089. doi: 10.1104/pp.65.6.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinraide T. B. Interamino Acid Inhibition of Transport in Higher Plants : EVIDENCE FOR TWO TRANSPORT CHANNELS WITH ASCERTAINABLE AFFINITIES FOR AMINO ACIDS. Plant Physiol. 1981 Dec;68(6):1327–1333. doi: 10.1104/pp.68.6.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komor E., Schobert C., Cho B. H. Sugar specificity and sugar-proton interaction for the hexose-proton-symport system of Chlorella. Eur J Biochem. 1985 Feb 1;146(3):649–656. doi: 10.1111/j.1432-1033.1985.tb08700.x. [DOI] [PubMed] [Google Scholar]
- Komor E., Schwab W. G., Tanner W. The effect of intracellular pH on the rate of hexose uptake in Chlorella. Biochim Biophys Acta. 1979 Aug 23;555(3):524–530. doi: 10.1016/0005-2736(79)90406-1. [DOI] [PubMed] [Google Scholar]
- Niemietz C., Hauer R., Höfer M. Active transport of charged substrates by a proton/sugar co-transport system. Amino-sugar uptake in the yeast Rhodotorula gracilis. Biochem J. 1981 Feb 15;194(2):433–441. doi: 10.1042/bj1940433. [DOI] [PMC free article] [PubMed] [Google Scholar]
