Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Sep;91(1):23–27. doi: 10.1104/pp.91.1.23

Abscisic Acid Suppression of Phenylalanine Ammonia-Lyase Activity and mRNA, and Resistance of Soybeans to Phytophthora megasperma f.sp. glycinea1

Edmund W B Ward 1,2, David M Cahill 1,2, Madan K Bhattacharyya 1,2
PMCID: PMC1061945  PMID: 16667002

Abstract

Etiolated hypocotyls of the resistant soybean (Glycine max [L.] Merr.) cultivar Harosoy 63 became susceptible to Phytophthora megasperma (Drechs.) f.sp. glycinea (Hildeb.) Kuan and Erwin race 1 after treatment with abscisic acid. Susceptibility was expressed by increases in lesion size and a major decrease in accumulation of the isoflavonoid phytoalexin, glyceollin. In untreated hypocotyls, activity of phenylalanine ammonia-lyase and accumulation of mRNA for this enzyme increased rapidly after infection, but these increases were suppressed in abscisic acid-treated hypocotyls. The results suggest the possibility that biosynthesis of glyceollin in the resistance response of soybeans may be controlled at the transcriptional level by changes in abscisic acid concentrations caused by infection.

Full text

PDF
23

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayers A. R., Ebel J., Finelli F., Berger N., Albersheim P. Host-Pathogen Interactions: IX. Quantitative Assays of Elicitor Activity and Characterization of the Elicitor Present in the Extracellular Medium of Cultures of Phytophthora megasperma var. sojae. Plant Physiol. 1976 May;57(5):751–759. doi: 10.1104/pp.57.5.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Edwards K., Cramer C. L., Bolwell G. P., Dixon R. A., Schuch W., Lamb C. J. Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6731–6735. doi: 10.1073/pnas.82.20.6731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hahn M. G., Darvill A. G., Albersheim P. Host-Pathogen Interactions : XIX. THE ENDOGENOUS ELICITOR, A FRAGMENT OF A PLANT CELL WALL POLYSACCHARIDE THAT ELICITS PHYTOALEXIN ACCUMULATION IN SOYBEANS. Plant Physiol. 1981 Nov;68(5):1161–1169. doi: 10.1104/pp.68.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kimpel J. A., Kosuge T. Metabolic Regulation during Glyceollin Biosynthesis in Green Soybean Hypocotyls. Plant Physiol. 1985 Jan;77(1):1–7. doi: 10.1104/pp.77.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lamb C. J., Merritt T. K., Butt V. S. Synthesis and removal of phenylalanine ammonia-lyase activity in illuminated discs of potato tuber parenchyme. Biochim Biophys Acta. 1979 Jan 18;582(2):196–212. doi: 10.1016/0304-4165(79)90384-2. [DOI] [PubMed] [Google Scholar]
  6. Paradies I., Konze J. R., Elstner E. F. Ethylene: indicator but not inducer of phytoalexin synthesis in soybean. Plant Physiol. 1980 Dec;66(6):1106–1109. doi: 10.1104/pp.66.6.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES