Abstract
Light-driven electron transfer reactions cause the active accumulation of protons inside thylakoids, yet at steady state the electrical potential difference across the thylakoid membrane is very small; therefore, there must be a flux of other ions to balance the charge that would otherwise be built up by the net movement of H+. This paper presents direct measurements of ion movements through channels in the thylakoid membrane. These were made possible by fusing thylakoid vesicles from spinach (Spinacia oleracea L.) into planar lipid bilayers, using techniques developed originally to study sarcoplasmic reticulum. No Mg2+ current was found, but voltage-dependent channels have been characterized, these being somewhat selective for K+ over Cl−. The data are consistent with a role for these channels in charge balance during light-driven H+ movements.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dilley R. A., Vernon L. P. Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys. 1965 Aug;111(2):365–375. doi: 10.1016/0003-9861(65)90198-0. [DOI] [PubMed] [Google Scholar]
- Gräber P., Witt H. T. Relations between the electrical potential, pH gradient, proton flux and phosphorylation in the photosynthetic membrane. Biochim Biophys Acta. 1976 Feb 16;423(2):141–163. doi: 10.1016/0005-2728(76)90174-2. [DOI] [PubMed] [Google Scholar]
- Heldt W. H., Werdan K., Milovancev M., Geller G. Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta. 1973 Aug 31;314(2):224–241. doi: 10.1016/0005-2728(73)90137-0. [DOI] [PubMed] [Google Scholar]
- Hind G., Nakatani H. Y., Izawa S. Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1484–1488. doi: 10.1073/pnas.71.4.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Junge W., Ausländer W., McGeer A. J., Runge T. The buffering capacity of the internal phase of thylakoids and the magnitude of the pH changes inside under flashing light. Biochim Biophys Acta. 1979 Apr 11;546(1):121–141. doi: 10.1016/0005-2728(79)90175-0. [DOI] [PubMed] [Google Scholar]
- Knowles B. H., Blatt M. R., Tester M., Horsnell J. M., Carroll J., Menestrina G., Ellar D. J. A cytolytic delta-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett. 1989 Feb 27;244(2):259–262. doi: 10.1016/0014-5793(89)80540-x. [DOI] [PubMed] [Google Scholar]
- Krause G. H. Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim Biophys Acta. 1977 Jun 9;460(3):500–510. doi: 10.1016/0005-2728(77)90088-3. [DOI] [PubMed] [Google Scholar]
- Miller C., Racker E. Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J Membr Biol. 1976;30(3):283–300. doi: 10.1007/BF01869673. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Portis A. R. Evidence of a Low Stromal Mg Concentration in Intact Chloroplasts in the Dark: I. STUDIES WITH THE IONOPHORE A23187. Plant Physiol. 1981 May;67(5):985–989. doi: 10.1104/pp.67.5.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Portis A. R., Jr, Chon C. J., Mosbach A., Heldt H. W. Fructose-and sedoheptulosebisphosphatase. The sites of a possible control of CO2 fixation by lightdependent changes of the stromal Mg2+ concentration. Biochim Biophys Acta. 1977 Aug 10;461(2):313–325. doi: 10.1016/0005-2728(77)90181-5. [DOI] [PubMed] [Google Scholar]
- Schröppel-Meier G., Kaiser W. M. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency : I. Solute Concentrations in Leaves and Chloroplasts from Spinach Plants under NaCl or NaNO(3) Salinity. Plant Physiol. 1988 Aug;87(4):822–827. doi: 10.1104/pp.87.4.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigrist-Nelson K., Azzi A. The proteolipid subunit of the chloroplast adenosine triphosphatase complex. Reconstitution and demonstration of proton-conductive properties. J Biol Chem. 1980 Nov 25;255(22):10638–10643. [PubMed] [Google Scholar]
- Smack D. P., Colombini M. Voltage-dependent channels found in the membrane fraction of corn mitochondria. Plant Physiol. 1985 Dec;79(4):1094–1097. doi: 10.1104/pp.79.4.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vambutas V., Schechter S. Chloride ion transport and its inhibition in thylakoid membranes. Arch Biochem Biophys. 1983 Jul 15;224(2):442–448. doi: 10.1016/0003-9861(83)90230-8. [DOI] [PubMed] [Google Scholar]
- Walz D., Goldstein L., Avron M. Determination and analysis of the buffer capacity of isolated chloroplasts in the light and in the dark. Eur J Biochem. 1974 Sep 1;47(2):403–407. doi: 10.1111/j.1432-1033.1974.tb03706.x. [DOI] [PubMed] [Google Scholar]
- Witt H. T. Coupling of quanta, electrons, fields, ions and phosphrylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Q Rev Biophys. 1971 Nov;4(4):365–477. doi: 10.1017/s0033583500000834. [DOI] [PubMed] [Google Scholar]
