Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Oct;91(2):473–476. doi: 10.1104/pp.91.2.473

Production of an Antibody Specific for the Propeptide of Wheat Germ Agglutinin 1

James J Smith 1, Natasha V Raikhel 1
PMCID: PMC1062023  PMID: 16667055

Abstract

Wheat germ agglutinin (WGA) is synthesized as a proprotein with a glycosylated, 15 amino acid, carboxyl-terminal propeptide. This glycopeptide is cleaved from pro-WGA to produce the mature lectin during the transport of WGA to the protein bodies/vacuoles. To study the posttranslational modification of WGA, it would be useful to be able to differentiate between pro-WGA and mature WGA. Therefore, a peptide corresponding to the propeptide of WGA was synthesized (WGA-B 172-186), and an antiserum was raised in rabbits (anti-WGA-B 172-186). Anti-WGA-B 172-186 reacted with pure WGA-B 172-186 and pro-WGA in ELISA. Anti-WGA-B 172-186 was also specific for and readily differentiated between pro-WGA and mature WGA on Western blots. This provided an assay to monitor pro-WGA on Western blots before and after endo-β-N-acetylglucosaminidase H digestion. Using this assay, direct evidence was obtained that the oligosaccharide of pro-WGA is of the high-mannose type.

Full text

PDF
473

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernatowicz M. S., Matsueda G. R. Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent. Anal Biochem. 1986 May 15;155(1):95–102. doi: 10.1016/0003-2697(86)90231-9. [DOI] [PubMed] [Google Scholar]
  2. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  4. Mishkind M., Raikhel N. V., Palevitz B. A., Keegstra K. Immunocytochemical localization of wheat germ agglutinin in wheat. J Cell Biol. 1982 Mar;92(3):753–764. doi: 10.1083/jcb.92.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nagata Y., Burger M. M. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem. 1974 May 25;249(10):3116–3122. [PubMed] [Google Scholar]
  6. Raikhel N. V., Wilkins T. A. Isolation and characterization of a cDNA clone encoding wheat germ agglutinin. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6745–6749. doi: 10.1073/pnas.84.19.6745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Stinissen H. M., Peumans W. J., Chrispeels M. J. Subcellular site of lectin synthesis in developing rice embryos. EMBO J. 1984 Sep;3(9):1979–1985. doi: 10.1002/j.1460-2075.1984.tb02079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Towbin H., Gordon J. Immunoblotting and dot immunobinding--current status and outlook. J Immunol Methods. 1984 Sep 4;72(2):313–340. doi: 10.1016/0022-1759(84)90001-2. [DOI] [PubMed] [Google Scholar]
  9. Trimble R. B., Maley F. Optimizing hydrolysis of N-linked high-mannose oligosaccharides by endo-beta-N-acetylglucosaminidase H. Anal Biochem. 1984 Sep;141(2):515–522. doi: 10.1016/0003-2697(84)90080-0. [DOI] [PubMed] [Google Scholar]
  10. Wright C. S. Refinement of the crystal structure of wheat germ agglutinin isolectin 2 at 1.8 A resolution. J Mol Biol. 1987 Apr 5;194(3):501–529. doi: 10.1016/0022-2836(87)90678-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES