Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Oct;91(2):500–504. doi: 10.1104/pp.91.2.500

Polyamines as Modulators of Salt Tolerance in Rice Cultivars

R Krishnamurthy 1, K A Bhagwat 1
PMCID: PMC1062029  PMID: 16667061

Abstract

The effect of NaCl on the endogenous levels of diamine, putrescine and polyamines, spermidine and spermine, was studied in the shoot system of salt-tolerant and salt-sensitive lines of rice (Oryza sativa L.) cultivars during three growth stages. Salt stress increased the levels of diamine and polyamine in varying degrees among nine rice cultivars investigated. Salt tolerant AU1, Co43, and CSC1 were effective in maintaining high concentrations of spermidine and spermine, while the content of putrescine was not significantly altered in all the growth stages when plants were exposed to salinity. The salt sensitivity in rice was associated with excessive accumulation of putrescine and with low levels of spermidine and spermine in the shoot system of salt-sensitive cultivars Co36, CSC2, GR3, IR20, TKM4, and TKM9 under saline condition. One of the possible mechanisms of saline resistance was observed to be due to the highly increased polyamines against the low increase in diamines. Alternatively, the salt sensitivity could be due to high increase of diamines and an incapacity to maintain high levels of polyamines.

Full text

PDF
500

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman A., Kaur-Sawhney R., Galston A. W. Stabilization of Oat Leaf Protoplasts through Polyamine-mediated Inhibition of Senescence. Plant Physiol. 1977 Oct;60(4):570–574. doi: 10.1104/pp.60.4.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUSCH H., HURLBERT R. B., POTTER V. R. Anion exchange chromatography of acids of the citric acid cycle. J Biol Chem. 1952 May;196(2):717–727. [PubMed] [Google Scholar]
  3. DUBIN D. T., ROSENTHAL S. M. The acetylation of polyamines in Escherichia coli. J Biol Chem. 1960 Mar;235:776–782. [PubMed] [Google Scholar]
  4. Flores H. E., Galston A. W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 1982 Mar;69(3):701–706. doi: 10.1104/pp.69.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hammond J. E., Herbst E. J. Analysis of polyamines by thin-layer chromatography. Anal Biochem. 1968 Mar;22(3):474–484. doi: 10.1016/0003-2697(68)90288-1. [DOI] [PubMed] [Google Scholar]
  6. Pegg A. E. Inhibition of spermidine formation in rat liver and kidney by methylglyoxal bis(guanylhydrazone). Biochem J. 1973 Mar;132(3):537–540. doi: 10.1042/bj1320537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Popovic R. B., Kyle D. J., Cohen A. S., Zalik S. Stabilization of Thylakoid Membranes by Spermine during Stress-induced Senescence of Barley Leaf Discs. Plant Physiol. 1979 Nov;64(5):721–726. doi: 10.1104/pp.64.5.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RICHARDS F. J., COLEMAN R. G. Occurrence of putrescine in potassium-deficient barley. Nature. 1952 Sep 13;170(4324):460–460. doi: 10.1038/170460a0. [DOI] [PubMed] [Google Scholar]
  9. Rupniak H. T., Paul D. Inhibition of spermidine and spermine synthesis leads to growth arrest of rat embryo fibroblasts in G1. J Cell Physiol. 1978 Feb;94(2):161–170. doi: 10.1002/jcp.1040940205. [DOI] [PubMed] [Google Scholar]
  10. Sanger F. The free amino groups of insulin. Biochem J. 1945;39(5):507–515. doi: 10.1042/bj0390507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Slocum R. D., Kaur-Sawhney R., Galston A. W. The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys. 1984 Dec;235(2):283–303. doi: 10.1016/0003-9861(84)90201-7. [DOI] [PubMed] [Google Scholar]
  12. Suzuki Y., Hirasawa E. S-adenosylmethionine decarboxylase of corn seedlings. Plant Physiol. 1980 Dec;66(6):1091–1094. doi: 10.1104/pp.66.6.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tabor C. W., Tabor H. Polyamines in microorganisms. Microbiol Rev. 1985 Mar;49(1):81–99. doi: 10.1128/mr.49.1.81-99.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES