Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Oct;91(2):514–525. doi: 10.1104/pp.91.2.514

Isolation and Characterization of High CO2-Requiring-Mutants of the Cyanobacterium Synechococcus PCC7942 1

Two Phenotypes that Accumulate Inorganic Carbon but Are Apparently Unable to Generate CO2 within the Carboxysome

G D Price 1, M R Badger 1
PMCID: PMC1062031  PMID: 16667063

Abstract

A total of 24 high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942 have been isolated and partially characterized. These chemically induced mutants are able to grow at 1% CO2, on agar media, but are incapable of growth at air levels of CO2. All the mutants were able to accumulate inorganic carbon (Ci) to levels similar to or higher than wild type cells, but were apparently unable to generate intracellular CO2. On the basis of the rate of Ci release following a light (5 minutes) → dark transition two extreme phenotypes (fast and slow release mutants) and a number of `intermediate' mutants (normal release) were identified. Compared to wild-type cells, Type I mutants had the following characteristics: fast Ci release, normal internal Ci pool, normal carbonic anhydrase (CA) activity in crude extracts, reduced internal exchange of 18O from 18O-labeled CO2, 1% CO2 requirement for growth in liquid media, normal affinity of carboxylase for CO2, and long, rod-like carboxysomes. Type II mutants had the following characteristics: slow Ci release, increased internal Ci pool, normal CA activity in crude extracts, normal internal 18O exchange, a 3% CO2 requirement for growth in liquid media, high carboxylase activity, normal affinity of carboxylase for CO2, and normal carboxysome structure but increased in numbers per cell. Both mutant phenotypes appear to have genetic lesions that result in an inability to convert intracellular HCO3 to CO2 inside the carboxysome. The features of the type I mutants are consistent with a scenario where carboxysomal CA has been mistargeted to the cytosol. The characteristics of the type II phenotype appear to be most consistent with a scenario where CA activity is totally missing from the cell except for the fact that cell extracts have normal CA activity. Alternatively the type II mutants may have a lesion in their capacity for H+ import during photosynthesis.

Full text

PDF
514

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews T. J., Abel K. M. Kinetics and subunit interactions of ribulose bisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcus sp. J Biol Chem. 1981 Aug 25;256(16):8445–8451. [PubMed] [Google Scholar]
  2. Badger M. R., Bassett M., Comins H. N. A Model for HCO(3) Accumulation and Photosynthesis in the Cyanobacterium Synechococcus sp: Theoretical Predictions and Experimental Observations. Plant Physiol. 1985 Feb;77(2):465–471. doi: 10.1104/pp.77.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Badger M. R. Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem Biophys. 1980 Apr 15;201(1):247–254. doi: 10.1016/0003-9861(80)90509-3. [DOI] [PubMed] [Google Scholar]
  4. Badger M. R., Price G. D. Carbonic Anhydrase Activity Associated with the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 1989 Jan;89(1):51–60. doi: 10.1104/pp.89.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dzelzkalns V. A., Owens G. C., Bogorad L. Chloroplast promoter driven expression of the chloramphenicol acetyl transferase gene in a cyanobacterium. Nucleic Acids Res. 1984 Dec 11;12(23):8917–8925. doi: 10.1093/nar/12.23.8917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gantt E., Conti S. F. Ultrastructure of blue-green algae. J Bacteriol. 1969 Mar;97(3):1486–1493. doi: 10.1128/jb.97.3.1486-1493.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golden S. S., Brusslan J., Haselkorn R. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 1987;153:215–231. doi: 10.1016/0076-6879(87)53055-5. [DOI] [PubMed] [Google Scholar]
  8. Marcus Y., Schwarz R., Friedberg D., Kaplan A. High CO(2) Requiring Mutant of Anacystis nidulans R(2). Plant Physiol. 1986 Oct;82(2):610–612. doi: 10.1104/pp.82.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ogawa T., Kaneda T., Omata T. A Mutant of Synechococcus PCC7942 Incapable of Adapting to Low CO(2) Concentration. Plant Physiol. 1987 Jul;84(3):711–715. doi: 10.1104/pp.84.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ogawa T., Kaplan A. The Stoichiometry between CO(2) and H Fluxes Involved in the Transport of Inorganic Carbon in Cyanobacteria. Plant Physiol. 1987 Apr;83(4):888–891. doi: 10.1104/pp.83.4.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Price G. D., Badger M. R. Ethoxyzolamide Inhibition of CO(2) Uptake in the Cyanobacterium Synechococcus PCC7942 without Apparent Inhibition of Internal Carbonic Anhydrase Activity. Plant Physiol. 1989 Jan;89(1):37–43. doi: 10.1104/pp.89.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Price G. D., Badger M. R. Ethoxyzolamide Inhibition of CO(2)-Dependent Photosynthesis in the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 1989 Jan;89(1):44–50. doi: 10.1104/pp.89.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Price G. D., Badger M. R. Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO(2)-Requiring Phenotype : Evidence for a Central Role for Carboxysomes in the CO(2) Concentrating Mechanism. Plant Physiol. 1989 Oct;91(2):505–513. doi: 10.1104/pp.91.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Volokita M., Zenvirth D., Kaplan A., Reinhold L. Nature of the Inorganic Carbon Species Actively Taken Up by the Cyanobacterium Anabaena variabilis. Plant Physiol. 1984 Nov;76(3):599–602. doi: 10.1104/pp.76.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wintermans J. F., de Mots A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta. 1965 Nov 29;109(2):448–453. doi: 10.1016/0926-6585(65)90170-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES