Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Oct;91(2):567–573. doi: 10.1104/pp.91.2.567

Phospholipid-Dependence of Plant UDP-Glucose Sterol β-d-Glucosyl Transferase 1

IV. Reconstitution into Small Unilamellar Vesicles

Alain Ury 1, Pierre Benveniste 1, Pierrette Bouvier-Navé 1
PMCID: PMC1062038  PMID: 16667070

Abstract

The phospholipid dependence of the UDP-glucose sterol glucosyl transferase (UDPG-SGTase) from maize coleoptiles was previously demonstrated using the partially purified and highly delipidated enzyme, in the presence of the detergent Triton X-100 (P Ullmann, P Bouvier-Navé, P Benveniste [1987] Plant Physiol 85: 51-55). We now report the reconstitution of the enzyme activity into unilamellar lipid vesicles. This was achieved by adding phospholipids, sterols and β-octylglucoside to the solubilized enzyme and passing the mixture through Sephadex G-50. The treatment led to almost complete removal of the detergents. The incorporation of UDPG-SGTase in the lipid vesicles was demonstrated by (a) coelution of the enzyme activity with the labeled lipid vesicles (average diameter: 260Å) on a Sephacryl S-1000 column and (b) flotation experiments on metrizamide density gradients. Release of dithiobis-(2-nitro-benzoic acid) (DTNB) from DTNB-preloaded vesicles was very slow, indicating good membrane integrity of the vesicles. Treatment of the intact vesicles with the nonpermeant reagent p-chloro-mercuribenzene sulfonate led to more than 95% inactivation of the total enzyme activity, i.e. the activity measured in the presence of Triton X-100 at permeabilizing concentration. This suggests an outward orientation for the active site of the enzyme. Finally, the enzyme was incorporated into vesicles of various phospholipid compositions and the kinetic parameters of the reactions were determined. Our results clearly show that the reconstituted UDPG-SGTase activity is stimulated to a large extent by negatively charged phospholipids.

Full text

PDF
567

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bladocha M., Benveniste P. Manipulation by tridemorph, a systemic fungicide, of the sterol composition of maize leaves and roots. Plant Physiol. 1983 Apr;71(4):756–762. doi: 10.1104/pp.71.4.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cocucci M., Ballarin-Denti A. Effect of polar lipids on ATPase activity of membrane preparations from germinating radish seeds. Plant Physiol. 1981 Aug;68(2):377–381. doi: 10.1104/pp.68.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Covés J., Joyard J., Douce R. Lipid requirement and kinetic studies of solubilized UDP-galactose:diacylglycerol galactosyltransferase activity from spinach chloroplast envelope membranes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):4966–4970. doi: 10.1073/pnas.85.14.4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fischl A. S., Homann M. J., Poole M. A., Carman G. M. Phosphatidylinositol synthase from Saccharomyces cerevisiae. Reconstitution, characterization, and regulation of activity. J Biol Chem. 1986 Mar 5;261(7):3178–3183. [PubMed] [Google Scholar]
  6. Ganong B. R., Bell R. M. Transmembrane movement of phosphatidylglycerol and diacylglycerol sulfhydryl analogues. Biochemistry. 1984 Oct 9;23(21):4977–4983. doi: 10.1021/bi00316a023. [DOI] [PubMed] [Google Scholar]
  7. Giaquinta R. Evidence for Phloem loading from the apoplast: chemical modification of membrane sulfhydryl groups. Plant Physiol. 1976 Jun;57(6):872–875. doi: 10.1104/pp.57.6.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grandmougin A., Bouvier-Navé P., Ullmann P., Benveniste P., Hartmann M. A. Cyclopropyl sterol and phospholipid composition of membrane fractions from maize roots treated with fenpropimorph. Plant Physiol. 1989 Jun;90(2):591–597. doi: 10.1104/pp.90.2.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green P. R., Bell R. M. Asymmetric reconstitution of homogeneous Escherichia coli sn-glycerol-3-phosphate acyltransferase into phospholipid vesicles. J Biol Chem. 1984 Dec 10;259(23):14688–14694. [PubMed] [Google Scholar]
  10. Hromy J. M., Carman G. M. Reconstitution of Saccharomyces cerevisiae phosphatidylserine synthase into phospholipid vesicles. Modulation of activity by phospholipids. J Biol Chem. 1986 Nov 25;261(33):15572–15576. [PubMed] [Google Scholar]
  11. Mimms L. T., Zampighi G., Nozaki Y., Tanford C., Reynolds J. A. Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry. 1981 Feb 17;20(4):833–840. doi: 10.1021/bi00507a028. [DOI] [PubMed] [Google Scholar]
  12. Reynolds J. A., Nozaki Y., Tanford C. Gel-exclusion chromatography on S1000 Sephacryl: application to phospholipid vesicles. Anal Biochem. 1983 Apr 15;130(2):471–474. doi: 10.1016/0003-2697(83)90618-8. [DOI] [PubMed] [Google Scholar]
  13. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  14. Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
  15. Sloan M. E., Rodis P., Wasserman B. P. CHAPS Solubilization and Functional Reconstitution of beta-Glucan Synthase from Red Beet Root (Beta vulgaris L.) Storage Tissue. Plant Physiol. 1987 Oct;85(2):516–522. doi: 10.1104/pp.85.2.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ueno M., Tanford C., Reynolds J. A. Phospholipid vesicle formation using nonionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability. Biochemistry. 1984 Jun 19;23(13):3070–3076. doi: 10.1021/bi00308a034. [DOI] [PubMed] [Google Scholar]
  17. Ullmann P., Bouvier-Navé P., Benveniste P. Regulation by Phospholipids and Kinetic Studies of Plant Membrane-Bound UDP-Glucose Sterol beta-d-Glucosyl Transferase. Plant Physiol. 1987 Sep;85(1):51–55. doi: 10.1104/pp.85.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Westcott K. R., Hill R. L. Reconstitution of a porcine submaxillary gland beta-D-galactoside alpha 2----3 sialyltransferase into liposomes. J Biol Chem. 1985 Oct 25;260(24):13116–13121. [PubMed] [Google Scholar]
  19. Wojciechowski Z. A. The biosynthesis of plant steryl glycosides and saponins. Biochem Soc Trans. 1983 Oct;11(5):565–568. doi: 10.1042/bst0110565. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES