Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Oct;91(2):756–765. doi: 10.1104/pp.91.2.756

Diclofop-Methyl Increases the Proton Permeability of Isolated Oat-Root Tonoplast 1

Denise Marie Ratterman 1,2, Nelson E Balke 1
PMCID: PMC1062067  PMID: 16667096

Abstract

Diclofop-methyl (methyl ester of 2-[4-(2′,4′-dichlorophenoxy)phenoxy]propionate; 100 micromolar) and diclofop (100 micromolar) inhibited both ATP- and PPi-dependent formation of H+ gradients by tonoplast vesicles isolated from oat (Avena sativa L., cv Dal) roots. Diclofop-methyl (1 micromolar) significantly reduced the steady-state H+ gradient generated in the presence of ATP. The ester (diclofop-methyl) was more inhibitory than the free acid (diclofop) at pH 7.4, but this relative activity was reversed at pH 5.7. Neither compound affected the rate of ATP or PPi hydrolysis by the proton-pumping enzymes. Diclofop-methyl (50, 100 micromolar), but not diclofop (100 micromolar), accelerated the decay of nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl (100 micromolar) did not collapse K+ gradients across vesicle membranes. Both the (+)- and (−)-enantiomers of diclofop-methyl dissipated nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl, but not diclofop (each 100 micromolar), accelerated the decay of H+ gradients imposed across liposomal membranes. These results show that diclofop-methyl causes a specific increase in the H+ permeability of tonoplast.

Full text

PDF
756

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bashford C. L., Smith J. C. The use of optical probes to monitor membrane potential. Methods Enzymol. 1979;55:569–586. doi: 10.1016/0076-6879(79)55067-8. [DOI] [PubMed] [Google Scholar]
  2. Blumwald E., Poole R. J. Na/H Antiport in Isolated Tonoplast Vesicles from Storage Tissue of Beta vulgaris. Plant Physiol. 1985 May;78(1):163–167. doi: 10.1104/pp.78.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Churchill K. A., Sze H. Anion-Sensitive, H-Pumping ATPase of Oat Roots : Direct Effects of Cl, NO(3), and a Disulfonic Stilbene. Plant Physiol. 1984 Oct;76(2):490–497. doi: 10.1104/pp.76.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dencher N. A., Burghaus P. A., Grzesiek S. Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes. Methods Enzymol. 1986;127:746–760. doi: 10.1016/0076-6879(86)27059-7. [DOI] [PubMed] [Google Scholar]
  5. Gogstad G. O., Krutnes M. B. Measurement of protein in cell suspensions using the Coomassie brilliant blue dye-binding assay. Anal Biochem. 1982 Nov 1;126(2):355–359. doi: 10.1016/0003-2697(82)90527-9. [DOI] [PubMed] [Google Scholar]
  6. Grzesiek S., Dencher N. A. The 'delta pH'-probe 9-aminoacridine: response time, binding behaviour and dimerization at the membrane. Biochim Biophys Acta. 1988 Mar 3;938(3):411–424. doi: 10.1016/0005-2736(88)90139-3. [DOI] [PubMed] [Google Scholar]
  7. Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
  8. Lee H. C., Forte J. G. A study of H+ transport in gastric microsomal vesicles using fluorescent probes. Biochim Biophys Acta. 1978 Apr 4;508(2):339–356. doi: 10.1016/0005-2736(78)90336-x. [DOI] [PubMed] [Google Scholar]
  9. Lucas W. J., Wilson C., Wright J. P. Perturbation of Chara Plasmalemma Transport Function by 2[4(2',4'-Dichlorophenoxy)phenoxy]propionic Acid. Plant Physiol. 1984 Jan;74(1):61–66. doi: 10.1104/pp.74.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schumaker K. S., Sze H. Calcium transport into the vacuole of oat roots. Characterization of H+/Ca2+ exchange activity. J Biol Chem. 1986 Sep 15;261(26):12172–12178. [PubMed] [Google Scholar]
  11. Thibaud J. B., Davidian J. C., Sentenac H., Soler A., Grignon C. H Cotransports in Corn Roots as Related to the Surface pH Shift Induced by Active H Excretion. Plant Physiol. 1988 Dec;88(4):1469–1473. doi: 10.1104/pp.88.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wang Y., Leigh R. A., Kaestner K. H., Sze H. Electrogenic h-pumping pyrophosphatase in tonoplast vesicles of oat roots. Plant Physiol. 1986 Jun;81(2):497–502. doi: 10.1104/pp.81.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wright J. P., Shimabukuro R. H. Effects of diclofop and diclofop-methyl on the membrane potentials of wheat and oat coleoptiles. Plant Physiol. 1987 Sep;85(1):188–193. doi: 10.1104/pp.85.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES