Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Nov;91(3):939–946. doi: 10.1104/pp.91.3.939

Analysis of Chromophytic and Rhodophytic Ribulose-1,5-Bisphosphate Carboxylase Indicates Extensive Structural and Functional Similarities among Evolutionarily Diverse Algae 1

Scott M Newman 1,2, Jay Derocher 1,3, Rose Ann Cattolico 1
PMCID: PMC1062099  PMID: 16667160

Abstract

Ribulose-1,5-bisphosphate carboxylase (Rubisco) from the algae Olisthodiscus luteus (chromophyte) and Griffithsia pacifica (rhodophyte) are remarkably similar to each other. However, both enzymes differ significantly in the structure and function when compared to Rubisco from green algae and land plants. Analysis of purified Rubisco from O. luteus and G. pacifica indicates that the size of the holoenzyme and stoichiometry of the 55 and 15 kilodalton subunit polypeptides are approximately 550 kilodaltons and eight:eight for both algae. Antigenic determinants are highly conserved between the O. luteus and G. pacifica enzymes and differ from those of the spinach subunit polypeptides. Sequence similarity between the two algal large subunits has been further confirmed by one-dimensional peptide mapping. Substrate ribulose bisphosphate has no effect on the rate of CO2/Mg2+ activation of O. luteus and G. pacifica enzymes which contrasts to the extensive inhibition of spinach Rubisco activation at similar concentrations of this compound. In addition, the Michaelis constant for CO2 and the inhibition constant for 6-phosphogluconate are similar for the O. luteus and G. pacifica catalyzed carboxylation reaction. Both values are intermediate to those observed for the tight binding spinach enzyme and weak binding prokaryotic (Rhodospirillum rubrum) enzyme. The biochemical similarities documented between O. luteus and G. pacifica may be due to a common evolutionary origin on the chromophytic and rhodophytic chloroplast but could also result from the fact that both subunit polypeptides are chloroplast DNA encoded in these algal taxa.

Full text

PDF
939

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews T. J., Abel K. M. Kinetics and subunit interactions of ribulose bisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcus sp. J Biol Chem. 1981 Aug 25;256(16):8445–8451. [PubMed] [Google Scholar]
  2. Birky C. W., Jr Relaxed cellular controls and organelle heredity. Science. 1983 Nov 4;222(4623):468–475. doi: 10.1126/science.6353578. [DOI] [PubMed] [Google Scholar]
  3. Boczar B. A., Delaney T. P., Cattolico R. A. Gene for the ribulose-1,5-bisphosphate carboxylase small subunit protein of the marine chromophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4996–4999. doi: 10.1073/pnas.86.13.4996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  5. Christeller J. T., Laing W. A. A kinetic study of ribulose bisphosphate carboxylase from the photosynthetic bacterium Rhodospirillum rubrum. Biochem J. 1978 Aug 1;173(2):467–473. doi: 10.1042/bj1730467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chu D. K., Bassham J. A. Inhibition of ribulose 1,5-diphosphate carboxylase by 6-phosphogluconate. Plant Physiol. 1972 Aug;50(2):224–227. doi: 10.1104/pp.50.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  8. Gibson J. L., Tabita F. R. Activation of ribulose 1,5-bisphosphate carboxylase from Rhodopseudomonas sphaeroides: probable role of the small subunit. J Bacteriol. 1979 Dec;140(3):1023–1027. doi: 10.1128/jb.140.3.1023-1027.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gibson J. L., Tabita F. R. Different molecular forms of D-ribulose-1,5-bisphosphate carboxylase from Rhodopseudomonas sphaeroides. J Biol Chem. 1977 Feb 10;252(3):943–949. [PubMed] [Google Scholar]
  10. Gibson J. L., Tabita F. R. Isolation and preliminary characterization of two forms of ribulose 1,5-bisphosphate carboxylase from Rhodopseudomonas capsulata. J Bacteriol. 1977 Dec;132(3):818–823. doi: 10.1128/jb.132.3.818-823.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hatch A. L., Jensen R. G. Regulation of ribulose-1,5-bisphosphate carboxylase from tobacco: changes in pH response and affinity for CO2 and Mg2+ induced by chloroplast intermediates. Arch Biochem Biophys. 1980 Dec;205(2):587–594. doi: 10.1016/0003-9861(80)90142-3. [DOI] [PubMed] [Google Scholar]
  12. Jordan D. B., Chollet R. Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J Biol Chem. 1983 Nov 25;258(22):13752–13758. [PubMed] [Google Scholar]
  13. Jordan D. B., Ogren W. L. Species variation in kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys. 1983 Dec;227(2):425–433. doi: 10.1016/0003-9861(83)90472-1. [DOI] [PubMed] [Google Scholar]
  14. Kuroiwa T. Mechanisms of maternal inheritance of chloroplast DNA: an active digestion hypothesis. Microbiol Sci. 1985 Sep;2(9):267–270. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Li N, Cattolico R A. Chloroplast genome characterization in the red alga Griffithsia pacifica. Mol Gen Genet. 1987 Sep;209(2):343–351. doi: 10.1007/BF00329664. [DOI] [PubMed] [Google Scholar]
  17. Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
  18. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  19. Myers A. M., Grant D. M., Rabert D. K., Harris E. H., Boynton J. E., Gillham N. W. Mutants of Chlamydomonas reinhardtii with physical alterations in their chloroplast DNA. Plasmid. 1982 Mar;7(2):133–151. doi: 10.1016/0147-619x(82)90073-7. [DOI] [PubMed] [Google Scholar]
  20. Newman S. M., Cattolico R. A. Structural, Functional, and Evolutionary Analysis of Ribulose-1,5-Bisphosphate Carboxylase from the Chromophytic Alga Olisthodiscus luteus. Plant Physiol. 1987 Jun;84(2):483–490. doi: 10.1104/pp.84.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pichersky E., Bernatzky R., Tanksley S. D., Cashmore A. R. Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3880–3884. doi: 10.1073/pnas.83.11.3880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Plumley F. G., Kirchman D. L., Hodson R. E., Schmidt G. W. Ribulose Bisphosphate Carboxylase from Three Chlorophyll c-Containing Algae : Physical and Immunological Characterizations. Plant Physiol. 1986 Mar;80(3):685–691. doi: 10.1104/pp.80.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reith M., Cattolico R. A. Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32,000-dalton Q(B) protein: Phylogenetic implications. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8599–8603. doi: 10.1073/pnas.83.22.8599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  25. Whitman W. B., Martin M. N., Tabita F. R. Activation and regulation of ribulose bisphosphate carboxylase-oxygenase in the absence of small subunits. J Biol Chem. 1979 Oct 25;254(20):10184–10189. [PubMed] [Google Scholar]
  26. Yeoh H. H., Badger M. R., Watson L. Variations in Kinetic Properties of Ribulose-1,5-bisphosphate Carboxylases among Plants. Plant Physiol. 1981 Jun;67(6):1151–1155. doi: 10.1104/pp.67.6.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES