Skip to main content
Chinese Journal of Contemporary Pediatrics logoLink to Chinese Journal of Contemporary Pediatrics
. 2023 Oct 15;25(10):1084–1088. [Article in Chinese] doi: 10.7499/j.issn.1008-8830.2306087

RBM20基因在扩张型心肌病中表达的研究进展

Research progress on the expression of the RBM20 gene in dilated cardiomyopathy

林 欣 1,✉,b
Editor: 王 颖
Reviewed by: 周 岩1
PMCID: PMC10621058  PMID: 37905768

Abstract

扩张型心肌病(dilated cardiomyopathy, DCM)是心力衰竭重要的原因之一,任何阶段均可出现严重的心血管事件,导致猝死。RNA结合基序蛋白20(RNA-binding motif protein 20, RBM20)基因突变是引起DCM的原因之一,呈家族性聚集,可合并心律失常,具有易猝死、早死亡的特点。该文介绍RBM20基因及其调节TTN基因、CAMK2基因的剪接,总结RBM20基因突变相关DCM的治疗,旨在提高临床工作者对RBM20基因的认识,为精准医学治疗提供新思路。

Keywords: 扩张型心肌病, RBM20基因, 可变剪接


扩张型心肌病(dilated cardiomyopathy, DCM)是全球心力衰竭重要的原因之一,表现为心脏结构出现一侧或双侧心室扩大及收缩功能减退,可同时合并心律失常,在疾病的任何阶段均可出现严重心血管事件,导致猝死,最终的治疗手段多为心脏移植。部分DCM原因不明,在特发性DCM中,20%~35%为家族遗传,多为常染色体显性遗传。自1990年发现第1例家族性心肌病致病性基因突变,目前已超过170个基因与心肌病、离子通道病等多种心脏系统疾病相关,超过60个基因可引起DCM1-2。2009年,首次发现RNA结合基序蛋白20(RNA binding motif protein 20, RBM20)基因突变可引起DCM3RBM20基因突变所致的心肌病多为家族性DCM,临床表现相似4,发病率为1%~5%5。少数RBM20基因突变所致的心肌病为散发性DCM6RBM20基因又可作为剪接因子,在转录过程中可变剪接TTN基因、TNNT2基因,在心脏发育中起重要作用。RBM20基因突变导致的DCM具有发病年龄小、心力衰竭严重、高病死率的特点7-9。目前,RBM20基因已被证实与多种心血管疾病相关,可表现为DCM、心律失常、猝死及心肌广泛纤维化、心肌致密化不全。

1. RBM20基因的结构

RBM20基因主要在横纹肌中表达,心肌中表达最高,非肌肉组织中几乎不表达10-11RBM20基因位于10号染色体,包含14个外显子,编码含1 227个氨基酸的蛋白质。存在物种间高度保守的功能区域,包括2个锌指(zinc finger, ZnF)结构域,1个RNA识别基序(RNA recognition motif, RRM)结构域,1个富含精氨酸/丝氨酸(arginine-/serine-rich, RS)区域,1个富含亮氨酸(leucine-rich, L-rich)区域,1个富含谷氨酸(glutamate-rich, E-rich)区域12-13图1)。其中,与DCM相关的RBM20基因突变多发生在RS区域21014-15,导致表达的蛋白质功能丧失。E-rich区域和ZnF结构域内突变发生率比RS区域低,但是在这些区域内发生突变后也会降低RBM20基因的剪接活性,影响所调控的基因表达,导致DCM16-17。不是所有突变均有意义,如I536T-RBM20基因突变影响基因表达、导致剪接异常,但是不会引起DCM18

图1. RBM20基因结构图 [ZnF]锌指;[RRM] RNA识别基序;[RS-rich]富含精氨酸/丝氨酸;[L-rich]富含亮氨酸;[E-rich]富含谷氨酸。.

图1

2. RBM20基因突变的表达

Zhang等19表明RS区域发生的突变介导中心核定位信号的中断,可引起严重的DCM。大多数RBM20基因突变定位在RS区域中的精氨酸-丝氨酸-精氨酸-丝氨酸-脯氨酸(arginine-serine-arginine-serine-proline, RSRSP)片段,RSRSP片段的磷酸化干扰了RBM20基因的核定位,在细胞质中形成异常的核糖核蛋白(ribonucleoprotein, RNP)颗粒,考虑这种RNP颗粒是形成DCM心肌改变的重要原因121420-21。另有研究表明,RSRSP片段突变使DCM表型更加严重,并发心房颤动及室性心律失常22。但是,低水平的磷酸化仍可提高蛋白质表达水平,可能是受反馈机制的作用23RBM20基因是心脏发育过程中核糖核酸处理机制的重要组成成分。RBM20基因突变干扰前体信使核糖核酸(pre-messenger RNA, pre-mRNA)的翻译后修饰过程,生成大量异常蛋白质(图2)。转录过程中,RBM20基因通过RRM结构域抑制上游和下游内含子17,Upadhyay等24发现RRM结构域具有C端螺旋,特异识别含尿嘧啶-胞嘧啶-尿嘧啶-尿嘧啶的RNA基序,成为转录pre-mRNA的基础。

图2. RBM20基因转录翻译及可变剪接TTN基因示意图 图片改自Koelemen等13的文章。RBM20基因突变影响转录及翻译过程,导致异常蛋白质聚积。同时,RBM20基因突变通过调整N2BA及NAB亚型比例,可变剪接TTN基因。.

图2

3. RBM20基因的可变剪接

RBM20基因突变导致可变剪接异常,导致靶基因形成致病性的环状RNA,并且在细胞质加工小体内重新生成RNP,导致心肌细胞变异,心脏收缩功能异常25RBM20基因的结构域在定位剪接位点及外显子/内含子的选择中至关重要。通过研究实验大鼠与人类心脏的基因,在内含子结合位点发现一组独特的RNA识别元件,在3'剪接位点下游400碱基对和5'剪接位点上游400碱基对位点与RBM20基因结合,并且,RBM20基因也通过与U1和U2核小核糖核蛋白颗粒(small nuclear ribonucle protein particle, snRNP)结合位点结合,抑制剪接过程1026

RBM20基因作为一种剪接因子,调节与影响心室舒张功能、肌节组装、离子转运等多个心脏相关基因的剪接11,包括TTN基因、CAMK2基因、MYH6基因、MYH7基因、RYR2基因、NEXN基因、NPRL2基因、TNNT2基因、PDLIM3基因等51127。本文介绍RBM20基因调控TTN基因及CAMK2基因的过程。

3.1. TTN基因

TTN基因突变是引起DCM常见的原因28,占10%~30%。TTN基因在人类中包含363个外显子,3个亚型,编码的肌联蛋白是人类体积最大的蛋白质,大小超过3 MDa,连接大多数横纹肌中的Z盘和粗丝,调节心肌收缩和弹性,是导致心肌硬化的重要因素20TTN基因主要的2种亚型是N2BA和NAB,心肌顺应性由N2BA和NAB所占比例不同决定。RBM20基因突变显著提高N2BA亚型表达,造成N2BA和NAB比例改变,使肌原纤维被动张力降低,导致心肌病1226-2729图2)。

3.2. CAMK2基因

CAMK2基因的产物属于丝氨酸/苏氨酸激酶家族的一种多功能蛋白激酶,蛋白激酶中的δ亚型在心脏中占主导地位。RBM20基因突变导致CAMK2基因的产物从常规的-δB和-δC亚型转变为-δA和-δ9亚型,导致L型钙离子电流增加,心肌细胞肌浆网中充满钙离子,细胞内钙离子超负荷,可能是DCM心律失常发生的原因2730

4. 性别差异

DCM发病率及临床严重程度存在性别差异,男性发病率高于女性,症状更加严重。一项Meta分析表明,相比于女性,男性DCM的全因病死率、心血管病死率及猝死风险更高31RBM20基因突变所致的DCM中,男性患者的临床症状也比女性更严重632。但是,Lennermann等33研究构建的RBM20基因敲除(knockout, KO)小鼠模型,虽然RBM20-KO所致DCM雄性小鼠的基因表达和磷酸化更加显著,但是心脏形态和功能与DCM雌性小鼠相比无性别差异。这种人类及小鼠的发病性别差异的不同可能受行为风险因素如吸烟、肥胖及激素等的影响。

5. 治疗

DCM在临床中大多数仍表现为收缩性心力衰竭。很多患者最后的治疗措施为心脏移植,但供体稀少。目前,已开展多项治疗RBM20基因突变所致心肌病的研究,期望可以治愈心力衰竭。

研究表明,强心苷类药物包括地高辛及洋地黄毒苷可以抑制RBM20基因对TTN基因的可变剪接,降低RBM20基因表达蛋白质的水平,可能改善舒张性心力衰竭34。丝氨酸-精氨酸蛋白激酶可以调节RSRSP片段的磷酸化,调控心肌病相关基因的剪接,成为治疗RBM20基因相关心肌病的潜在治疗靶点21。应用CRISPR/Cas9基因编辑技术建立体外心肌模型,此模型包含RBM20基因杂合突变的多能干细胞定向分化心肌细胞,通过全反式维甲酸上调RBM20基因表达,部分恢复由RBM20基因缺陷引起的剪接、钙处理异常和收缩功能障碍,有望修复RBM20基因突变所致的DCM35

基因突变的精准校正是一种新的治疗方法。一项研究指出,应用腺嘌呤碱基编辑和先导编辑校正RS区域内的突变,诱导多能干细胞衍生出心肌细胞,使心力衰竭的大鼠恢复心脏功能14。目前,关于基因编辑改善致病性RBM20基因变异体修复的方法研究仍在初级阶段。

6. 总结与展望

RBM20基因突变通过多种途径导致DCM,其转录、翻译及调控其他基因可变剪接的过程复杂。目前,对于RBM20基因突变所致DCM的治疗方案多基于基础研究,由于RBM20基因具有物种间高度保守的特征,非同源物种、体内及体外的RBM20基因研究结果有部分不同,对人类DCM的疗效仍需要更多临床研究与基础研究结合进一步明确。

利益冲突声明

所有作者声明无利益冲突。

参 考 文 献

  • 1. Brodehl A, Gaertner-Rommel A, Milting H. FLNC (filamin-C): a new(er) player in the field of genetic cardiomyopathies[J]. Circ Cardiovasc Genet, 2017, 10(6): e001959. DOI: 10.1161/CIRCGENETICS.117.001959. [DOI] [PubMed] [Google Scholar]
  • 2. Zahr HC, Jaalouk DE. Exploring the crosstalk between LMNA and splicing machinery gene mutations in dilated cardiomyopathy[J]. Front Genet, 2018, 9: 231. DOI: 10.3389/fgene.2018.00231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Brauch KM, Karst ML, Herron KJ, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy[J]. J Am Coll Cardiol, 2009, 54(10): 930-941. DOI: 10.1016/j.jacc.2009.05.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Robles-Mezcua A, Rodríguez-Miranda L, Morcillo-Hidalgo L, et al. Phenotype and progression among patients with dilated cardiomyopathy and RBM20 mutations[J]. Eur J Med Genet, 2021, 64(9): 104278. DOI: 10.1016/j.ejmg.2021.104278. [DOI] [PubMed] [Google Scholar]
  • 5. 李雪银, 李广平. 家族性扩张型心肌病基因突变与精准医学[J]. 中华心力衰竭和心肌病杂志(中英文), 2019, 3(4): 231-234. DOI: 10.3760/cma.j.issn.2096-3076.2019.04.009. [DOI] [Google Scholar]
  • 6. Li M, Xia S, Xu L, et al. Genetic analysis using targeted next-generation sequencing of sporadic Chinese patients with idiopathic dilated cardiomyopathy[J]. J Transl Med, 2021, 19(1): 189. DOI: 10.1186/s12967-021-02832-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Gaertner A, Klauke B, Brodehl A, et al. RBM20 mutations in left ventricular non-compaction cardiomyopathy[J]. Pediatr Investig, 2020, 4(1): 61-63. DOI: 10.1002/ped4.12184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Liatakis I, Prappa E, Gouziouta A, et al. RBM20 mutation and ventricular arrhythmias in a young patient with dilated cardiomyopathy: a case report[J]. Am J Cardiovasc Dis, 2021, 11(3): 398-403. [PMC free article] [PubMed] [Google Scholar]
  • 9. 彭昌, 徐合平, 王世远. RBM20基因新发错义突变致家族性儿童扩张性心肌病1例报告[J]. 临床儿科杂志, 2018, 36(12): 912-915. DOI: 10.3969/j.issn.1000-3606.2018.12.007. [DOI] [Google Scholar]
  • 10. Maatz H, Jens M, Liss M, et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing[J]. J Clin Invest, 2014, 124(8): 3419-3430. DOI: 10.1172/JCI74523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Guo W, Schafer S, Greaser ML, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing[J]. Nat Med, 2012, 18(5): 766-773. DOI: 10.1038/nm.2693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Watanabe T, Kimura A, Kuroyanagi H. Alternative splicing regulator RBM20 and cardiomyopathy[J]. Front Mol Biosci, 2018, 5: 105. DOI: 10.3389/fmolb.2018.00105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Koelemen J, Gotthardt M, Steinmetz LM, et al. RBM20-related cardiomyopathy: current understanding and future options[J]. J Clin Med, 2021, 10(18): 4101. DOI: 10.3390/jcm10184101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Nishiyama T, Zhang Y, Cui M, et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy[J]. Sci Transl Med, 2022, 14(672): eade1633. DOI: 10.1126/scitranslmed.ade1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Gaertner A, Bloebaum J, Brodehl A, et al. The combined human genotype of truncating TTN and RBM20 mutations is associated with severe and early onset of dilated cardiomyopathy[J]. Genes (Basel), 2021, 12(6): 883. DOI: 10.3390/genes12060883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Gaertner A, Klauke B, Felski E, et al. Cardiomyopathy-associated mutations in the RS domain affect nuclear localization of RBM20 [J]. Hum Mutat, 2020, 41(11): 1931-1943. DOI: 10.1002/humu.24096. [DOI] [PubMed] [Google Scholar]
  • 17. Dauksaite V, Gotthardt M. Molecular basis of titin exon exclusion by RBM20 and the novel titin splice regulator PTB4 [J]. Nucleic Acids Res, 2018, 46(10): 5227-5238. DOI: 10.1093/nar/gky165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Yamamoto T, Sano R, Miura A, et al. I536T variant of RBM20 affects splicing of cardiac structural proteins that are causative for developing dilated cardiomyopathy[J]. J Mol Med (Berl), 2022, 100(12): 1741-1754. DOI: 10.1007/s00109-022-02262-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Zhang Y, Gregorich ZR, Wang Y, et al. Disruption of the nuclear localization signal in RBM20 is causative in dilated cardiomyopathy[J]. JCI insight, 2023, 8(13): e170001. DOI: 10.1172/jci.insight.170001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Murayama R, Kimura-Asami M, Togo-Ohno M, et al. Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-binding motif protein 20 (RBM20) through nuclear localization[J]. Sci Rep, 2018, 8(1): 8970. DOI: 10.1038/s41598-018-26624-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Sun M, Jin Y, Zhang Y, et al. SR protein kinases regulate the splicing of cardiomyopathy-relevant genes via phosphorylation of the RSRSP stretch in RBM20 [J]. Genes (Basel), 2022, 13(9): 1526. DOI: 10.3390/genes13091526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Ihara K, Sasano T, Hiraoka Y, et al. A missense mutation in the RSRSP stretch of Rbm20 causes dilated cardiomyopathy and atrial fibrillation in mice[J]. Sci Rep, 2020, 10(1): 17894. DOI: 10.1038/s41598-020-74800-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Zhang Y, Wang C, Sun M, et al. RBM20 phosphorylation and its role in nucleocytoplasmic transport and cardiac pathogenesis[J]. FASEB J, 2022, 36(5): e22302. DOI: 10.1096/fj.202101811RR. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Upadhyay SK, Mackereth CD. Structural basis of UCUU RNA motif recognition by splicing factor RBM20 [J]. Nucleic Acids Res, 2020, 48(8): 4538-4550. DOI: 10.1093/nar/gkaa168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Fenix AM, Miyaoka Y, Bertero A, et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies[J]. Nat Commun, 2021, 12(1): 6324. DOI: 10.1038/s41467-021-26623-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. 郑奎, 娄美娜. TTN基因突变致儿童扩张型心肌病的研究进展[J]. 中国当代儿科杂志, 2023, 25(2): 217-222. DOI: 10.7499/j.issn.1008-8830.2208163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Lennermann D, Backs J, van den Hoogenhof MMG. New insights in RBM20 cardiomyopathy[J]. Curr Heart Fail Rep, 2020, 17(5): 234-246. DOI: 10.1007/s11897-020-00475-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Domínguez F, Lalaguna L, Martínez-Martín I, et al. Titin missense variants as a cause of familial dilated cardiomyopathy[J]. Circulation, 2023, 147(22): 1711-1713. DOI: 10.1161/CIRCULATIONAHA.122.062833. [DOI] [PubMed] [Google Scholar]
  • 29. Li N, Hang W, Shu H, et al. RBM20, a therapeutic target to alleviate myocardial stiffness via titin isoforms switching in HFpEF[J]. Front Cardiovasc Med, 2022, 9: 928244. DOI: 10.3389/fcvm.2022.928244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. van den Hoogenhof MMG, Beqqali A, Amin AS, et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling[J]. Circulation, 2018, 138(13): 1330-1342. DOI: 10.1161/CIRCULATIONAHA.117.031947. [DOI] [PubMed] [Google Scholar]
  • 31. Long C, Liu X, Xiong Q, et al. Sex differences in dilated cardiomyopathy prognosis[J]. Int Heart J, 2022, 63(1): 36-42. DOI: 10.1536/ihj.20-448. [DOI] [PubMed] [Google Scholar]
  • 32. Hey TM, Rasmussen TB, Madsen T, et al. Pathogenic RBM20-variants are associated with a severe disease expression in male patients with dilated cardiomyopathy[J]. Circ Heart Fail, 2019, 12(3): e005700. DOI: 10.1161/CIRCHEARTFAILURE.118.005700. [DOI] [PubMed] [Google Scholar]
  • 33. Lennermann DC, Pepin ME, Grosch M, et al. Deep phenotyping of two preclinical mouse models and a cohort of RBM20 mutation carriers reveals no sex-dependent disease severity in RBM20 cardiomyopathy[J]. Am J Physiol Heart Circ Physiol, 2022, 323(6): H1296-H1310. DOI: 10.1152/ajpheart.00328.2022. [DOI] [PubMed] [Google Scholar]
  • 34. Liss M, Radke MH, Eckhard J, et al. Drug discovery with an RBM20 dependent titin splice reporter identifies cardenolides as lead structures to improve cardiac filling[J]. PLoS One, 2018, 13(6): e0198492. DOI: 10.1371/journal.pone.0198492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Briganti F, Sun H, Wei W, et al. iPSC modeling of RBM20-deficient DCM identifies upregulation of RBM20 as a therapeutic strategy[J]. Cell Rep, 2020, 32(10): 108117. DOI: 10.1016/j.celrep.2020.108117. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Contemporary Pediatrics are provided here courtesy of Xiangya Hospital, Central South University

RESOURCES