Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Dec;91(4):1296–1302. doi: 10.1104/pp.91.4.1296

Effects of Helminthosporium maydis Race T Toxin on Electron Transport in Susceptible Corn Mitochondria and Prevention of Toxin Actions by Dicyclohexylcarbodiimide 1

Marcia J Holden 1,2, Heven Sze 1
PMCID: PMC1062182  PMID: 16667179

Abstract

The effect of Helminthosporium maydis race T toxin on electron transport in susceptible cytoplasmic male-sterile Texas corn (Zea mays L.) mitochondria was investigated, using dichlorophenol indophenol and ferricyanide as electron acceptors. Succinate-dependent electron transport was stimulated by the toxin, consistent with the well described increase in membrane permeability induced by the toxin. Malate-dependent electron transport was inhibited. This inhibition of electron transport increased as a function of time of exposure to the toxin. Mitochondria from normal-fertile (N) corn were not affected by the toxin. Both the inhibition of electron transport and the increase in ion permeability, such as dissipation of membrane potential and Ca2+ gradients, induced by the toxin in T corn was prevented by N,N′-dicyclohexylcarbodiimide, a hydrophobic carbodiimide. A water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, was ineffective in preventing dissipation of membrane potential by the toxin. These results suggest that the various toxin actions are mediated via interaction of the toxin with one target site, most probably a 13 kilodalton polypeptide unique to T mitochondria. N,N′-dicyclohexylcarbodiimide may confer protection by modifying an amino acid residue in a hydrophobic portion of the target site.

Full text

PDF
1296

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandre A., Lehninger A. L. Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function. Biochim Biophys Acta. 1984 Oct 26;767(1):120–129. doi: 10.1016/0005-2728(84)90086-0. [DOI] [PubMed] [Google Scholar]
  2. Bednarski M. A., Izawa S., Scheffer R. P. Reversible Effects of Toxin from Helminthosporium maydis Race T on Oxidative Phosphorylation by Mitochondria from Maize. Plant Physiol. 1977 Apr;59(4):540–545. doi: 10.1104/pp.59.4.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bervillé A., Ghazi A., Charbonnier M., Bonavent J. F. Effects of Methomyl and Helminthosporium maydis Toxin on Matrix Volume, Proton Motive Force, and NAD Accumulation in Maize (Zea mays L.) Mitochondria. Plant Physiol. 1984 Oct;76(2):508–517. doi: 10.1104/pp.76.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Dewey R. E., Levings C. S., 3rd, Timothy D. H. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell. 1986 Feb 14;44(3):439–449. doi: 10.1016/0092-8674(86)90465-4. [DOI] [PubMed] [Google Scholar]
  6. Dewey R. E., Siedow J. N., Timothy D. H., Levings C. S., 3rd A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science. 1988 Jan 15;239(4837):293–295. doi: 10.1126/science.3276005. [DOI] [PubMed] [Google Scholar]
  7. Dewey R. E., Timothy D. H., Levings C. S. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5374–5378. doi: 10.1073/pnas.84.15.5374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Douce R., Mannella C. A., Bonner W. D., Jr The external NADH dehydrogenases of intact plant mitochondria. Biochim Biophys Acta. 1973 Jan 18;292(1):105–116. doi: 10.1016/0005-2728(73)90255-7. [DOI] [PubMed] [Google Scholar]
  9. Forde B. G., Oliver R. J., Leaver C. J. Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3841–3845. doi: 10.1073/pnas.75.8.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gregory P., Earle E. D., Gracen V. E. Effects of Purified Helminthosporium maydis Race T Toxin on the Structure and Function of Corn Mitochondria and Protoplasts. Plant Physiol. 1980 Sep;66(3):477–481. doi: 10.1104/pp.66.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holden M. J., Sze H. Dissipation of the Membrane Potential in Susceptible Corn Mitochondria by the Toxin of Helminthosporium maydis, Race T, and Toxin Analogs. Plant Physiol. 1987 Jul;84(3):670–676. doi: 10.1104/pp.84.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holden M. J., Sze H. Helminthosporium maydis T Toxin Increased Membrane Permeability to Ca in Susceptible Corn Mitochondria. Plant Physiol. 1984 May;75(1):235–237. doi: 10.1104/pp.75.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Honkakoski P. J., Hassinen I. E. Sensitivity to NN'-dicyclohexylcarbodi-imide of proton translocation by mitochondrial NADH:ubiquinone oxidoreductase. Biochem J. 1986 Aug 1;237(3):927–930. doi: 10.1042/bj2370927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ikuma H., Bonner W. D. Properties of Higher Plant Mitochondria. III. Effects of Respiratory Inhibitors. Plant Physiol. 1967 Nov;42(11):1535–1544. doi: 10.1104/pp.42.11.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klein R. R., Koeppe D. E. Mode of Methomyl and Bipolaris maydis (race T) Toxin in Uncoupling Texas Male-Sterile Cytoplasm Corn Mitochondria. Plant Physiol. 1985 Apr;77(4):912–916. doi: 10.1104/pp.77.4.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klingenberg M. The ferricyanide method for elucidating the sidedness of membrane-bound dehydrogenases. Methods Enzymol. 1979;56:229–233. doi: 10.1016/0076-6879(79)56025-x. [DOI] [PubMed] [Google Scholar]
  17. Matthews D. E., Gregory P., Gracen V. E. Helminthosporium maydis Race T Toxin Induces Leakage of NAD from T Cytoplasm Corn Mitochondria. Plant Physiol. 1979 Jun;63(6):1149–1153. doi: 10.1104/pp.63.6.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller R. J., Koeppe D. E. Southern corn leaf blight: susceptible and resistant mitochondria. Science. 1971 Jul 2;173(3991):67–69. doi: 10.1126/science.173.3991.67. [DOI] [PubMed] [Google Scholar]
  19. Moore A. L., Bonner W. D. Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol. 1982 Nov;70(5):1271–1276. doi: 10.1104/pp.70.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nałecz M. J., Casey R. P., Azzi A. Use of N,N'-dicyclohexylcarbodiimide to study membrane-bound enzymes. Methods Enzymol. 1986;125:86–108. doi: 10.1016/s0076-6879(86)25009-0. [DOI] [PubMed] [Google Scholar]
  21. Neuburger M., Day D. A., Douce R. Transport of NAD in Percoll-Purified Potato Tuber Mitochondria: Inhibition of NAD Influx and Efflux by N-4-Azido-2-nitrophenyl-4-aminobutyryl-3'-NAD. Plant Physiol. 1985 Jun;78(2):405–410. doi: 10.1104/pp.78.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Payne G., Kono Y., Daly J. M. A Comparison of Purified Host Specific Toxin from Helminthosporium maydis, Race T, and Its Acetate Derivative on Oxidation by Mitochondria from Susceptible and Resistant Plants. Plant Physiol. 1980 May;65(5):785–791. doi: 10.1104/pp.65.5.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rich P. R., Moore A. L., Bonner W. D., Jr The effects of bathophenanthroline, bathophenanthrolinesulphonate and 2-thenoyltrifluoroacetone on mung-bean mitochondria and submitochondrial particles. Biochem J. 1977 Jan 15;162(1):205–208. doi: 10.1042/bj1620205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Singer T. P., Oestreicher G., Hogue P. Regulation of Succinate Dehyrogenase in Higher Plants: I. Some General Characteristics of the Membrane-bound Enzyme. Plant Physiol. 1973 Dec;52(6):616–621. doi: 10.1104/pp.52.6.616. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES