Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Jan;92(1):29–36. doi: 10.1104/pp.92.1.29

Leaf Phosphate Status, Photosynthesis, and Carbon Partitioning in Sugar Beet

III. Diurnal Changes in Carbon Partitioning and Carbon Export

I Madhusudana Rao 1, Arthur L Fredeen 1, Norman Terry 1
PMCID: PMC1062243  PMID: 16667261

Abstract

The effect of low phosphate supply (low P) was determined on the diurnal changes in the rate of carbon export, and on the contents of starch, sucrose, glucose, and fructose 2,6-bisphosphate (F2,6BP) in leaves. Low-P effects on the activities of a number of enzymes involved in starch and sucrose metabolism were also measured. Sugar beets (Beta vulgaris L. cv. F58-554H1) were cultured hydroponically in growth chambers and the low-P treatment induced nutritionally. Low-P treatment decreased carbon export from the leaf much more than it decreased photosynthesis. At growth chamber photon flux density, low P decreased carbon export by 34% in light; in darkness, export rates fell but more so in the control so that the average rate in darkness was higher in low-P leaves. Low P increased starch, sucrose, and glucose contents per leaf area, and decreased F2, 6BP. The total extractable activities of enzymes involved in starch and sucrose synthesis were increased markedly by low P, e.g. adenosine 5-diphosphoglucose pyrophosphorylase, cytoplasmic fructose-1,6-bisphosphatase, uridine 5-diphosphoglucose pyrophosphorylase, and sucrose-phosphate synthase. The activities of some enzymes involved in starch and sucrose breakdown were also increased by low P. We propose that plants adapt to low-P environments by increasing the total activities of several phosphatases and by increasing the concentrations of phosphate-free carbon compounds at the expense of sugar phosphates, thereby conserving Pi. The partitioning of carbon among the various carbon pools in low-P adapted leaves appears to be determined in part by the relative capacities of the enzymes for starch and sucrose metabolism.

Full text

PDF
29

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fader G. M., Koller H. R. Relationships between Carbon Assimilation, Partitioning, and Export in Leaves of Two Soybean Cultivars. Plant Physiol. 1983 Oct;73(2):297–303. doi: 10.1104/pp.73.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fahrendorf T., Holtum J. A., Mukherjee U., Latzko E. Fructose 2,6-bisphosphate, carbohydrate partitioning, and crassulacean Acid metabolism. Plant Physiol. 1987 May;84(1):182–187. doi: 10.1104/pp.84.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fredeen A. L., Rao I. M., Terry N. Influence of Phosphorus Nutrition on Growth and Carbon Partitioning in Glycine max. Plant Physiol. 1989 Jan;89(1):225–230. doi: 10.1104/pp.89.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heldt H. W., Chon C. J., Maronde D. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol. 1977 Jun;59(6):1146–1155. doi: 10.1104/pp.59.6.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kerr P. S., Huber S. C., Israel D. W. Effect of N-source on soybean leaf sucrose phosphate synthase, starch formation, and whole plant growth. Plant Physiol. 1984 Jun;75(2):483–488. doi: 10.1104/pp.75.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  7. Levi C., Preiss J. Amylopectin degradation in pea chloroplast extracts. Plant Physiol. 1978 Feb;61(2):218–220. doi: 10.1104/pp.61.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ou-Lee T. M., Setter T. L. Enzyme activities of starch and sucrose pathways and growth of apical and Basal maize kernels. Plant Physiol. 1985 Nov;79(3):848–851. doi: 10.1104/pp.79.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Radin J. W., Eidenbock M. P. Carbon Accumulation during Photosynthesis in Leaves of Nitrogen- and Phosphorus-Stressed Cotton. Plant Physiol. 1986 Nov;82(3):869–871. doi: 10.1104/pp.82.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rao I. M., Arulanantham A. R., Terry N. Leaf Phosphate Status, Photosynthesis and Carbon Partitioning in Sugar Beet: II. Diurnal Changes in Sugar Phosphates, Adenylates, and Nicotinamide Nucleotides. Plant Physiol. 1989 Jul;90(3):820–826. doi: 10.1104/pp.90.3.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rao I. M., Terry N. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet: I. Changes in growth, gas exchange, and calvin cycle enzymes. Plant Physiol. 1989 Jul;90(3):814–819. doi: 10.1104/pp.90.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rea P. A., Poole R. J. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. doi: 10.1104/pp.77.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rufty T. W., Kerr P. S., Huber S. C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol. 1983 Oct;73(2):428–433. doi: 10.1104/pp.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schmalstig J. G., Hitz W. D. Contributions of sucrose synthase and invertase to the metabolism of sucrose in developing leaves : estimation by alternate substrate utilization. Plant Physiol. 1987 Oct;85(2):407–412. doi: 10.1104/pp.85.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES