Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Jan;92(1):37–40. doi: 10.1104/pp.92.1.37

Spinach Chloroplastic Carbonic Anhydrase

Nucleotide Sequence Analysis of cDNA

James N Burnell 1,1, Mark J Gibbs 1, John G Mason 1
PMCID: PMC1062244  PMID: 16667262

Abstract

We have determined the nucleotide sequence of a cDNA encoding spinach (Spinacia oleracea) chloroplastic carbonic anhydrase (CA). The open reading frame encodes a protein consisting of a transit peptide and a mature CA protein with a predicted mass of 24, 116 daltons. This represents the first report of a nucleotide sequence of a plant CA.

Full text

PDF
37

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins C. A., Patterson B. D., Graham D. Plant Carbonic Anhydrases: I. Distribution of Types among Species. Plant Physiol. 1972 Aug;50(2):214–217. doi: 10.1104/pp.50.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Burnell J. N., Hatch M. D. Low bundle sheath carbonic anhydrase is apparently essential for effective c(4) pathway operation. Plant Physiol. 1988 Apr;86(4):1252–1256. doi: 10.1104/pp.86.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnell J. N., Hatch M. D. Regulation of C4 photosynthesis: catalytic phosphorylation as a prerequisite for ADP-mediated inactivation of pyruvate,Pi dikinase. Biochem Biophys Res Commun. 1984 Jan 13;118(1):65–72. doi: 10.1016/0006-291x(84)91068-4. [DOI] [PubMed] [Google Scholar]
  5. Deutsch H. F. Carbonic anhydrases. Int J Biochem. 1987;19(2):101–113. doi: 10.1016/0020-711x(87)90320-x. [DOI] [PubMed] [Google Scholar]
  6. Fernley R. T. Non-cytoplasmic carbonic anhydrases. Trends Biochem Sci. 1988 Sep;13(9):356–359. doi: 10.1016/0968-0004(88)90107-7. [DOI] [PubMed] [Google Scholar]
  7. Graham D., Reed M. L., Patterson B. D., Hockley D. G., Dwyer M. R. Chemical properties, distribution, and physiology of plant and algal carbonic anhydrases. Ann N Y Acad Sci. 1984;429:222–237. doi: 10.1111/j.1749-6632.1984.tb12340.x. [DOI] [PubMed] [Google Scholar]
  8. Hewett-Emmett D., Hopkins P. J., Tashian R. E., Czelusniak J. Origins and molecular evolution of the carbonic anhydrase isozymes. Ann N Y Acad Sci. 1984;429:338–358. doi: 10.1111/j.1749-6632.1984.tb12359.x. [DOI] [PubMed] [Google Scholar]
  9. Jacobson B. S., Fong F., Heath R. L. Carbonic anhydrase of spinach: studies on its location, inhibition, and physiological function. Plant Physiol. 1975 Mar;55(3):468–474. doi: 10.1104/pp.55.3.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Joshi C. P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987 Aug 25;15(16):6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kandel M., Gornall A. G., Cybulsky D. L., Kandel S. I. Carbonic anhydrase from spinach leaves. Isolation and some chemical properties. J Biol Chem. 1978 Feb 10;253(3):679–685. [PubMed] [Google Scholar]
  12. Karlin-Neumann G. A., Tobin E. M. Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework. EMBO J. 1986 Jan;5(1):9–13. doi: 10.1002/j.1460-2075.1986.tb04170.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsuoka M., Ozeki Y., Yamamoto N., Hirano H., Kano-Murakami Y., Tanaka Y. Primary structure of maize pyruvate, orthophosphate dikinase as deduced from cDNA sequence. J Biol Chem. 1988 Aug 15;263(23):11080–11083. [PubMed] [Google Scholar]
  15. Miller H. Practical aspects of preparing phage and plasmid DNA: growth, maintenance, and storage of bacteria and bacteriophage. Methods Enzymol. 1987;152:145–170. doi: 10.1016/0076-6879(87)52016-x. [DOI] [PubMed] [Google Scholar]
  16. Nevins J. R. The pathway of eukaryotic mRNA formation. Annu Rev Biochem. 1983;52:441–466. doi: 10.1146/annurev.bi.52.070183.002301. [DOI] [PubMed] [Google Scholar]
  17. Poincelot R. P. Intracellular distribution of carbonic anhydrase in spinach leaves. Biochim Biophys Acta. 1972 Feb 28;258(2):637–642. doi: 10.1016/0005-2744(72)90255-0. [DOI] [PubMed] [Google Scholar]
  18. Poincelot R. P. The distribution of carbonic anhydrase and ribulose diphosphate carboxylase in maize leaves. Plant Physiol. 1972 Sep;50(3):336–340. doi: 10.1104/pp.50.3.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reed M. L. Intracellular location of carbonate dehydratase (carbonic anhydrase) in leaf tissue. Plant Physiol. 1979 Jan;63(1):216–217. doi: 10.1104/pp.63.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmidt G. W., Mishkind M. L. The transport of proteins into chloroplasts. Annu Rev Biochem. 1986;55:879–912. doi: 10.1146/annurev.bi.55.070186.004311. [DOI] [PubMed] [Google Scholar]
  22. Tobin A. J. Carbonic anhydrase from parsley leaves. J Biol Chem. 1970 May 25;245(10):2656–2666. [PubMed] [Google Scholar]
  23. Werdan K., Heldt H. W. Accumulation of bicarbonate in intact chloroplasts following a pH gradient. Biochim Biophys Acta. 1972 Dec 14;283(3):430–441. doi: 10.1016/0005-2728(72)90260-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES