Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Apr;92(4):939–945. doi: 10.1104/pp.92.4.939

Chloroplast and Mitochondrial DNA Polymerases from Cultured Soybean Cells

Sabine Heinhorst 1,2, Gordon C Cannon 1,2, Arthur Weissbach 1,2
PMCID: PMC1062399  PMID: 16667409

Abstract

DNA polymerases were purified from chloroplasts and mitochondria of cultured Glycine max cells. The chloroplast enzyme exists in two forms which are indistinguishable from each other biochemically. All three organellar enzymes have an estimated molecular weight of 85,000 to 90,000 and prefer poly(rA)dT12-18 over activated DNA as a template in vitro. Maximum activity of the chloroplast and mitochondrial DNA polymerases requires KCl and a reducing agent, and the enzymes are completely resistant to inhibitors of DNA polymerase α. Taken together, these properties classify the soybean organellar enzymes as DNA polymerases γ. A unique feature that distinguishes the plant enzymes from their animal counterparts is their resistance to dideoxyribonucleotides.

Full text

PDF
939

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertazzoni U., Scovassi A. I., Brun G. M. Chick-embryo DNA polymerase gamma. Identity of gamma-polymerases purified from nuclei and mitochondria. Eur J Biochem. 1977 Dec 1;81(2):237–248. doi: 10.1111/j.1432-1033.1977.tb11945.x. [DOI] [PubMed] [Google Scholar]
  2. Bolden A., Noy G. P., Weissbach A. DNA polymerase of mitochondria is a gamma-polymerase. J Biol Chem. 1977 May 25;252(10):3351–3356. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Castroviejo M., Tarragó-Litvak L., Litvak S. Partial purification and characterization of two cytoplasmic DNA polymerases from ungerminated wheat. Nucleic Acids Res. 1975 Nov;2(11):2077–2090. doi: 10.1093/nar/2.11.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DePamphilis M. L., Wassarman P. M. Replication of eukaryotic chromosomes: a close-up of the replication fork. Annu Rev Biochem. 1980;49:627–666. doi: 10.1146/annurev.bi.49.070180.003211. [DOI] [PubMed] [Google Scholar]
  6. Gold B., Carrillo N., Tewari K. K., Bogorad L. Nucleotide sequence of a preferred maize chloroplast genome template for in vitro DNA synthesis. Proc Natl Acad Sci U S A. 1987 Jan;84(1):194–198. doi: 10.1073/pnas.84.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horn M. E., Sherrard J. H., Widholm J. M. Photoautotrophic growth of soybean cells in suspension culture: I. Establishment of photoautotrophic cultures. Plant Physiol. 1983 Jun;72(2):426–429. doi: 10.1104/pp.72.2.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hübscher U., Kuenzle C. C., Spadari S. Functional roles of DNA polymerases beta and gamma. Proc Natl Acad Sci U S A. 1979 May;76(5):2316–2320. doi: 10.1073/pnas.76.5.2316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hübscher U., Kuenzle C. C., Spadari S. Identity of DNA polymerase gamma from synaptosomal mitochondria and rat-brain nuclei. Eur J Biochem. 1977 Dec 1;81(2):249–258. doi: 10.1111/j.1432-1033.1977.tb11946.x. [DOI] [PubMed] [Google Scholar]
  10. Karawya E. M., Wilson S. H. Studies on catalytic subunits of mouse myeloma alpha-polymerase. J Biol Chem. 1982 Nov 10;257(21):13129–13134. [PubMed] [Google Scholar]
  11. Khan N. N., Wright G. E., Dudycz L. W., Brown N. C. Butylphenyl dGTP: a selective and potent inhibitor of mammalian DNA polymerase alpha. Nucleic Acids Res. 1984 Apr 25;12(8):3695–3706. doi: 10.1093/nar/12.8.3695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knopf K. W., Yamada M., Weissbach A. HeLa cell DNA polymerase gamma: further purification and properties of the enzyme. Biochemistry. 1976 Oct 5;15(20):4540–4548. doi: 10.1021/bi00665a032. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lawrence M. E., Possingham J. V. Microspectrofluorometric Measurement of Chloroplast DNA in Dividing and Expanding Leaf Cells of Spinacia oleracea. Plant Physiol. 1986 Jun;81(2):708–710. doi: 10.1104/pp.81.2.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKown R. L., Tewari K. K. Purification and properties of a pea chloroplast DNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2354–2358. doi: 10.1073/pnas.81.8.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Misumi M., Weissbach A. The isolation and characterization of DNA polymerase alpha from spinach. J Biol Chem. 1982 Mar 10;257(5):2323–2329. [PubMed] [Google Scholar]
  17. Sala F., Amileni A. R., Parisi B., Spadari S. A gamma-like DNA polymerase in spinach chloroplasts. Eur J Biochem. 1980 Nov;112(2):211–217. doi: 10.1111/j.1432-1033.1980.tb07196.x. [DOI] [PubMed] [Google Scholar]
  18. Sala F., Parisi B., Burroni D., Amileni A. R., Pedrali-Noy G., Spadari S. Specific and reversible inhibition by aphidicolin in the alpha-like DNA polymerase of plant cells. FEBS Lett. 1980 Aug 11;117(1):93–98. doi: 10.1016/0014-5793(80)80920-3. [DOI] [PubMed] [Google Scholar]
  19. Scovassi A. I., Torsello S., Plevani P., Badaracco G. F., Bertazzoni U. Active polypeptide fragments common to prokaryotic, eukaryotic, and mitochondrial DNA polymerases. EMBO J. 1982;1(10):1161–1165. doi: 10.1002/j.1460-2075.1982.tb00007.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spadari S., Weissbach A. HeLa cell R-deoxyribonucleic acid polymerases. Separation and characterization of two enzymatic activities. J Biol Chem. 1974 Sep 25;249(18):5809–5815. [PubMed] [Google Scholar]
  21. Spanos A., Sedgwick S. G., Yarranton G. T., Hübscher U., Banks G. R. Detection of the catalytic activities of DNA polymerases and their associated exonucleases following SDS-polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Apr 24;9(8):1825–1839. doi: 10.1093/nar/9.8.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spencer D., Whitfeld P. R. The characteristics of spinach chloroplast DNA polymerase. Arch Biochem Biophys. 1969 Jul;132(2):477–488. doi: 10.1016/0003-9861(69)90392-0. [DOI] [PubMed] [Google Scholar]
  23. Tewari K. K., Wildman S. G. DNA polymerase in isolated tobacco chloroplasts and nature of the polymerized product. Proc Natl Acad Sci U S A. 1967 Aug;58(2):689–696. doi: 10.1073/pnas.58.2.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang T. S., Wong S. W., Korn D. Human DNA polymerase alpha: predicted functional domains and relationships with viral DNA polymerases. FASEB J. 1989 Jan;3(1):14–21. doi: 10.1096/fasebj.3.1.2642867. [DOI] [PubMed] [Google Scholar]
  25. Wernette C. M., Kaguni L. S. A mitochondrial DNA polymerase from embryos of Drosophila melanogaster. Purification, subunit structure, and partial characterization. J Biol Chem. 1986 Nov 5;261(31):14764–14770. [PubMed] [Google Scholar]
  26. Yamaguchi M., Matsukage A., Takahashi T. Chick embryo DNA polymerase gamma. Purification and structural analysis of nearly homogeneous enzyme. J Biol Chem. 1980 Jul 25;255(14):7002–7009. [PubMed] [Google Scholar]
  27. Zimmermann W., Chen S. M., Bolden A., Weissbach A. Mitochondrial DNA replication does not involve DNA polymerase alpha. J Biol Chem. 1980 Dec 25;255(24):11847–11852. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES