Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 May;93(1):208–215. doi: 10.1104/pp.93.1.208

Vegetative/Parasitic Transition: Control and Plasticity in Striga Development 1

Christopher E Smith 1, Matthew W Dudley 1, David G Lynn 1
PMCID: PMC1062490  PMID: 16667437

Abstract

Striga asiatica (Scrophulariaceae), an obligate parasite of grasses including many of the world's major grain crops, switches from vegetative to parasitic development by the differentiation of the root meristem into the host attachment organ, the haustorium. This change was induced in culture by the exposure to a single, low molecular weight signal molecule, 2,6-dimethoxy-p-benzo-quinone. A concentration of 10−6 molar quinone and an exposure time of ≥6 hours were required before the developmental process could be completed. With shorter exposure times, haustorial development was prematurely aborted and meristematic elongation was reestablished. The new meristem was capable of developing a second haustorium if reexposed to the signal molecule. These results are discussed in terms of the transition to the parasitic phase and the general control of plant cellular development.

Full text

PDF
208

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. A., McFadden G. I., Bernatzky R., Atkinson A., Orpin T., Dedman H., Tregear G., Fernley R., Clarke A. E. Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. Plant Cell. 1989 May;1(5):483–491. doi: 10.1105/tpc.1.5.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolton G. W., Nester E. W., Gordon M. P. Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science. 1986 May 23;232(4753):983–985. doi: 10.1126/science.3085219. [DOI] [PubMed] [Google Scholar]
  3. Dicker P., Rozengurt E. Stimulation of DNA synthesis by transient exposure of cell cultures to TPA or polypeptide mitogens: induction of competence or incomplete removal? J Cell Physiol. 1981 Oct;109(1):99–109. doi: 10.1002/jcp.1041090112. [DOI] [PubMed] [Google Scholar]
  4. Peters N. K., Frost J. W., Long S. R. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science. 1986 Aug 29;233(4767):977–980. doi: 10.1126/science.3738520. [DOI] [PubMed] [Google Scholar]
  5. Roger P. P., Servais P., Dumont J. E. Regulation of dog thyroid epithelial cell cycle by forskolin, an adenylate cyclase activator. Exp Cell Res. 1987 Oct;172(2):282–292. doi: 10.1016/0014-4827(87)90387-9. [DOI] [PubMed] [Google Scholar]
  6. Van Obberghen-Schilling E., Chambard J. C., Paris S., L'Allemain G., Pouysségur J. alpha-Thrombin-induced early mitogenic signalling events and G0 to S-phase transition of fibroblasts require continual external stimulation. EMBO J. 1985 Nov;4(11):2927–2932. doi: 10.1002/j.1460-2075.1985.tb04025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES