Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 May;93(1):353–355. doi: 10.1104/pp.93.1.353

Fructokinases from Developing Maize Kernels Differ in Their Specificity for Nucleoside Triphosphates

Douglas C Doehlert 1
PMCID: PMC1062512  PMID: 16667461

Abstract

A new form of fructokinase has been identified from developing maize (Zea mays L.) kernels that utilizes CTP, UTP, and GTP from four to eight times more effectively than ATP at nonlimiting concentrations. Ten millimolar dithiothreitol was necessary to stabilize activity. A second form of fructokinase was nonspecific for nucleoside triphosphate whereas a third form was fairly specific for ATP.

Full text

PDF
353

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Doehlert D. C. Ketose reductase activity in developing maize endosperm. Plant Physiol. 1987 Jul;84(3):830–834. doi: 10.1104/pp.84.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doehlert D. C., Kuo T. M., Felker F. C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol. 1988 Apr;86(4):1013–1019. doi: 10.1104/pp.86.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doehlert D. C. Separation and characterization of four hexose kinases from developing maize kernels. Plant Physiol. 1989 Apr;89(4):1042–1048. doi: 10.1104/pp.89.4.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huber S. C., Akazawa T. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells. Plant Physiol. 1986 Aug;81(4):1008–1013. doi: 10.1104/pp.81.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Morrison J. F. Approaches to kinetic studies on metal-activated enzymes. Methods Enzymol. 1979;63:257–294. doi: 10.1016/0076-6879(79)63013-6. [DOI] [PubMed] [Google Scholar]
  6. Xu D. P., Sung S. J., Black C. C. Sucrose metabolism in lima bean seeds. Plant Physiol. 1989 Apr;89(4):1106–1116. doi: 10.1104/pp.89.4.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Xu D. P., Sung S. J., Loboda T., Kormanik P. P., Black C. C. Characterization of Sucrolysis via the Uridine Diphosphate and Pyrophosphate-Dependent Sucrose Synthase Pathway. Plant Physiol. 1989 Jun;90(2):635–642. doi: 10.1104/pp.90.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES