Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Jun;93(2):623–630. doi: 10.1104/pp.93.2.623

The S-Methylmethionine Cycle in Lemna paucicostata

S Harvey Mudd 1, Anne H Datko 1
PMCID: PMC1062560  PMID: 16667513

Abstract

The metabolism of S-methylmethionine has been studied in cultures of plants of Lemna paucicostata and of cells of carrot (Daucus carota) and soybean (Glycine max). In each system, radiolabeled S-methylmethionine was rapidly formed from labeled l-methionine, consistent with the action of S-adenosyl-l-methionine:methionine S-methyltransferase, an enzyme which was demonstrated during these studies in Lemna homogenates. In Lemna plants and carrot cells radiolabel disappeared rapidly from S-methylmethionine during chase incubations in nonradioactive media. The results of pulse-chase experiments with Lemna strongly suggest that administered radiolabeled S-methylmethionine is metabolized initially to soluble methionine, then to the variety of compounds formed from soluble methionine. An enzyme catalyzing the transfer of a methyl group from S-methylmethionine to homocysteine to form methionine was demonstrated in homogenates of Lemna. The net result of these reactions, together with the hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine, is to convert S-adenosylmethionine to methionine and adenosine. A physiological advantage is postulated for this sequence in that it provides the plant with a means of sustaining the pool of soluble methionine even when overshoot occurs in the conversion of soluble methionine to S-adenosylmethionine. The facts that the pool of soluble methionine is normally very small relative to the flux into S-adenosylmethionine and that the demand for the latter compound may change very markedly under different growth conditions make it plausible that such overshoot may occur unless the rate of synthesis of S-adenosylmethionine is regulated with exquisite precision. The metabolic cost of this apparent safeguard is the consumption of ATP. This S-methylmethionine cycle may well function in plants other than Lemna, but further substantiating evidence is neeeded.

Full text

PDF
623

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allamong B. D., Abrahamson L. Assay for S-adenosylmethionine: methionine methyltransferase. Anal Biochem. 1973 Jun;53(2):343–349. doi: 10.1016/0003-2697(73)90080-8. [DOI] [PubMed] [Google Scholar]
  2. Datko A. H., Giovanelli J., Mudd S. H. Homocysteine biosynthesis in green plants. O-Phosphorylhomoserine as the physiological substrate for cystathionine gamma-synthase. J Biol Chem. 1974 Feb 25;249(4):1139–1155. [PubMed] [Google Scholar]
  3. Datko A. H., Mudd S. H. Enzymes of phosphatidylcholine synthesis in lemna, soybean, and carrot. Plant Physiol. 1988 Dec;88(4):1338–1348. doi: 10.1104/pp.88.4.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Datko A. H., Mudd S. H., Giovanelli J. Lemna paucicostata Hegelm. 6746: DEVELOPMENT OF STANDARDIZED GROWTH CONDITIONS SUITABLE FOR BIOCHEMICAL EXPERIMENTATION. Plant Physiol. 1980 May;65(5):906–912. doi: 10.1104/pp.65.5.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Datko A. H., Mudd S. H. Phosphatidylcholine synthesis: differing patterns in soybean and carrot. Plant Physiol. 1988 Nov;88(3):854–861. doi: 10.1104/pp.88.3.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Datko A. H., Mudd S. H. Responses of Sulfur-Containing Compounds in Lemna paucicostata Hegelm. 6746 to Changes in Availability of Sulfur Sources. Plant Physiol. 1984 Jun;75(2):474–479. doi: 10.1104/pp.75.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Datko A. H., Mudd S. H. Uptake of Amino Acids and Other Organic Compounds by Lemna paucicostata Hegelm. 6746. Plant Physiol. 1985 Mar;77(3):770–778. doi: 10.1104/pp.77.3.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dodd W. A., Cossins E. A. Homocysteine-dependent transmethylases catalyzing the synthesis of methionine in germinating pea seeds. Biochim Biophys Acta. 1970 Mar 24;201(3):461–470. doi: 10.1016/0304-4165(70)90166-2. [DOI] [PubMed] [Google Scholar]
  9. GREENE R. C., DAVIS N. B. Biosynthesis of S-methylmethionine in the jack bean. Biochim Biophys Acta. 1960 Sep 23;43:360–362. doi: 10.1016/0006-3002(60)90457-1. [DOI] [PubMed] [Google Scholar]
  10. Giovanelli J., Mudd S. H., Datko A. H. Quantitative analysis of pathways of methionine metabolism and their regulation in lemna. Plant Physiol. 1985 Jul;78(3):555–560. doi: 10.1104/pp.78.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giovanelli J., Mudd S. H., Datko A. H. Recycling of methionine sulfur in a higher plant by two pathways characterized by either loss or retention of the 4-carbon moiety. Biochem Biophys Res Commun. 1981 May 29;100(2):831–839. doi: 10.1016/s0006-291x(81)80249-5. [DOI] [PubMed] [Google Scholar]
  12. Giovanelli J., Mudd S. H. Radioactive methionine: determination, and distribution of radioactivity in the sulfur, methyl and 4-carbon moieties. J Biochem Biophys Methods. 1985 May;11(1):1–11. doi: 10.1016/0165-022x(85)90036-3. [DOI] [PubMed] [Google Scholar]
  13. Hanson A. D., Kende H. Methionine metabolism and ethylene biosynthesis in senescent flower tissue of morning-glory. Plant Physiol. 1976 Apr;57(4):528–537. doi: 10.1104/pp.57.4.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hattula T., Granroth B. Formation of dimethyl sulphide from S-methylmethionine in onion seedlings (Allium cepa). J Sci Food Agric. 1974 Dec;25(12):1517–1521. doi: 10.1002/jsfa.2740251212. [DOI] [PubMed] [Google Scholar]
  15. Ladesić B., Keglević D. Biochemical studies in tobacco plants. II. The metabolism of the optical isomers of alpha- and beta-methionine in Nicotiana rustica. Arch Biochem Biophys. 1965 Sep;111(3):653–659. doi: 10.1016/0003-9861(65)90247-x. [DOI] [PubMed] [Google Scholar]
  16. Lewis B. G., Johnson C. M., Broyer T. C. Cleavage of Se-methylselenomethionine selenomium salt by a cabbage leaf enzyme fraction. Biochim Biophys Acta. 1971 Jun 22;237(3):603–605. doi: 10.1016/0304-4165(71)90281-9. [DOI] [PubMed] [Google Scholar]
  17. Macnicol P. K. Analysis of S-methylmethionine and S-adenosylmethionine in plant tissue by a dansylation, dual-isotope method. Anal Biochem. 1986 Oct;158(1):93–97. doi: 10.1016/0003-2697(86)90594-4. [DOI] [PubMed] [Google Scholar]
  18. Macnicol P. K., Randall P. J. Changes in the levels of major sulfur metabolites and free amino acids in pea cotyledons recovering from sulfur deficiency. Plant Physiol. 1987 Feb;83(2):354–359. doi: 10.1104/pp.83.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maturri L., Azzolini A., Campiglio G. L., Tardito E. Are synthetic prostheses really inert? Preliminary results of a study on the biocompatibility of Dacron vascular prostheses and Silicone skin expanders. Int Surg. 1991 Apr-Jun;76(2):115–118. [PubMed] [Google Scholar]
  20. Mudd S. H., Datko A. H. Methionine methyl group metabolism in lemna. Plant Physiol. 1986 May;81(1):103–114. doi: 10.1104/pp.81.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mudd S. H., Datko A. H. Phosphoethanolamine bases as intermediates in phosphatidylcholine synthesis by lemna. Plant Physiol. 1986 Sep;82(1):126–135. doi: 10.1104/pp.82.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mudd S. H., Datko A. H. Synthesis of methylated ethanolamine moieties: regulation by choline in lemna. Plant Physiol. 1989 May;90(1):296–305. doi: 10.1104/pp.90.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mudd S. H., Datko A. H. Synthesis of methylated ethanolamine moieties: regulation by choline in soybean and carrot. Plant Physiol. 1989 May;90(1):306–310. doi: 10.1104/pp.90.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
  25. SATO C. S., BYERRUM R. U., ALBERSHEIM P., BONNER J. Metabolism of methionine and pectin esterification in a plant tissue. J Biol Chem. 1958 Jul;233(1):128–131. [PubMed] [Google Scholar]
  26. SHAPIRO S. K., YPHANTIS D. A. Assay of S-methylmethionine and S-adenosylmethionine homocysteine transmethylases. Biochim Biophys Acta. 1959 Nov;36:241–244. doi: 10.1016/0006-3002(59)90089-7. [DOI] [PubMed] [Google Scholar]
  27. TURNER J. E., SHAPIRO S. K. S-Methylmethionine- and S-adenosylmethionine-homocysteine transmethylase in higher plant seeds. Biochim Biophys Acta. 1961 Aug 19;51:581–584. doi: 10.1016/0006-3002(61)90617-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES