Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Jun;93(2):837–840. doi: 10.1104/pp.93.2.837

Effect of d-myo-Inositol 1,4,5-Trisphosphate on the Electrical Properties of the Red Beet Vacuole Membrane

Joël Alexandre 1, Jean-Paul Lassalles 1
PMCID: PMC1062594  PMID: 16667547

Abstract

The effect of channel opening in the tonoplast by d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] has been examined on red beet (Beta vulgaris) vacuoles. Patch-clamp measurements of the vacuolar potential and current were performed on vacuoles isolated in 0.1 micromolar free Ca2+ medium. With vacuoles clamped at +30 millivolts, the Ins(1,4,5)P3 induced changes in current were depending on the Ca2+ buffer strength in the external medium. The spontaneous depolarization of vacuoles in which H+-pumps were activated by 5 millimolar MgATP was increased from +6 to +18 millivolts by 1 micromolar Ins(1,4,5)P3. We have interpreted our data by assuming that even with 2 millimolar EGTA to buffer Ca2+ at 0.1 micromolar in the external medium, Ins(1,4,5)P3 released enough Ca2+ from the vacuole to produce an accumulation of this ion near the tonoplast. Apart from their dependency with free Ca2+ in the cytoplasm, the electrical properties of the tonoplast could be depending on the Ins(1,4,5)P3 and Ca2+ buffer values in the cytoplasm.

Full text

PDF
837

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  2. Cornelius G., Gebauer G., Techel D. Inositol trisphosphate induces calcium release from Neurospora crassa vacuoles. Biochem Biophys Res Commun. 1989 Jul 31;162(2):852–856. doi: 10.1016/0006-291x(89)92388-7. [DOI] [PubMed] [Google Scholar]
  3. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):247–289. doi: 10.1085/jgp.85.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  5. Hedrich R., Kurkdjian A. Characterization of an anion-permeable channel from sugar beet vacuoles: effect of inhibitors. EMBO J. 1988 Dec 1;7(12):3661–3666. doi: 10.1002/j.1460-2075.1988.tb03247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hedrich R., Kurkdjian A., Guern J., Flügge U. I. Comparative studies on the electrical properties of the H+ translocating ATPase and pyrophosphatase of the vacuolar-lysosomal compartment. EMBO J. 1989 Oct;8(10):2835–2841. doi: 10.1002/j.1460-2075.1989.tb08430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schumaker K. S., Sze H. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J Biol Chem. 1987 Mar 25;262(9):3944–3946. [PubMed] [Google Scholar]
  8. Takagi S., Nagai R. Light-affected ca fluxes in protoplasts from vallisneria mesophyll cells. Plant Physiol. 1988 Sep;88(1):228–232. doi: 10.1104/pp.88.1.228. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES