Skip to main content
IUCrData logoLink to IUCrData
. 2023 Jul 28;8(Pt 7):x230639. doi: 10.1107/S2414314623006399

N-(5-Cyano­nonan-5-yl)benzamide

Xueqing Song a,*, William Li a
Editor: R J Butcherb
PMCID: PMC10626610  PMID: 37937133

The title compound crystallizes in the ortho­rhom­bic space group Pbca with eight formula units per unit cell. The N—H group forms an inter­molecular N—H⋯O hydrogen bond to the amide carbonyl O atom, generating chains.

Keywords: crystal structure, hydrogen bonding, strecker reaction, amino acid synthesis

Abstract

N-(5-Cyano­nonan-5-yl)benzamide, C17H24N2O, synthesized from the reaction between benzoyl chloride and 2-amino-2-butyl­hexa­nenitrile, is an important inter­mediate in amino acid synthesis. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds with N⋯O and C⋯O distances of 3.083 (2) and 3.304 (2) Å, respectively, link adjacent mol­ecules into chains along the a axis. The dihedral angle between the mean plane of the phenyl group and the plane of the amide group is 19.504 (4)°. graphic file with name x-08-x230639-scheme1-3D1.jpg

Structure description

The title compound was synthesized from the reaction between 2-amino-2-butyl­hexa­ne­nitrile and benzoyl chloride, and is an important inter­mediate in amino acid synthesis. Shu et al. (2008) reported that a benzamide was an inter­mediate in their five-step synthesis of Fmoc-α-methyl­valine (Fmoc is the fluorenyl­meth­oxy­carbonyl protecting group). Paventi et al. (1987) found that the benzoyl group in the mol­ecule had assisted the hydrolysis of the nitrile in the acid hydrolysis of benzoyl­amino­nitrile to afford an α-amino acid. Some amino­nitriles were difficult to convert into α-amino acids without introducing a benzoyl group. An oxazoline inter­mediate was proposed to ease the acid hydrolysis of the nitrile in 2-benzamido­adamantane-2-carbo­nitrile.

In the crystal of the title compound (Fig. 1), inter­molecular N—H⋯O and C—H⋯O hydrogen bonds with N⋯O and C⋯O distances of 3.083 (2) and 3.304 (2) Å, respectively, link adjacent mol­ecules into chains along the a axis (Table 1 and Figs. 2 and 3). The dihedral angle between the mean plane of the phenyl group and the plane of the amide O1/C1/N1/C12 group (r.m.s. deviation 0.002 Å) is 19.504 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.52 3.3046 (17) 142
N2—H2N⋯O1i 0.860 (16) 2.229 (16) 3.0829 (13) 171.7 (13)

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

Inter­molecular N—H⋯O and N—H⋯O hydrogen bonds.

Figure 3.

Figure 3

The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

A two-step procedure was used to synthesize N-(5-cyano­nonan-5-yl)benzamide. The first step was the Strecker synthesis using nonan-5-one, ammonia, ammonium chloride and NaCN as starting materials to afford 2-amino-2-butyl­hexa­nenitrile. The second step was the reaction between 2-amino-2-butyl­hexa­nenitrile and benzoyl chloride in an aqueous solution of sodium bicarbonate to afford crude N-(5-cyano­nonan-5-yl)benzamide. This was then purified via column chromatography, and slow evaporation of a dilute solution in ethyl acetate afforded a needle-like crystal (m.p. 383–385 K).

1H NMR (CDCl3, ppm): δ 7.835–7.707 (2H, m), 7.621–7.526 (1H, m), 7.525–7.406 (2H, m), 6.145–5.982 (1H, s), 2.231–2.205 (4H, m), 1.656–1.339 (8H, m), 1.038–0.867 (6H, m). 13C NMR (CDCl3, ppm): δ 166.7, 133.8, 132.0, 128.9, 127.0, 119.9, 55.4, 36.3, 26.4, 22.6, 13.7.

Refinement

The crystal data, data collection and structure refinement details are summarized in Table 2. The amide H atom was refined isotropically. All other H atoms were refined with isotropic displacement parameters, calculated as U iso(H) = 1.5U eq(C) for methyl groups and 1.2U eq(C) otherwise.

Table 2. Experimental details.

Crystal data
Chemical formula C17H24N2O
M r 272.38
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 298
a, b, c (Å) 10.3939 (1), 17.6680 (2), 17.6653 (2)
V3) 3244.05 (6)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.54
Crystal size (mm) 0.06 × 0.03 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB Synergy diffrac­tometer with a HyPix detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
T min, T max 0.852, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15515, 3322, 2883
R int 0.027
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.112, 1.08
No. of reflections 3322
No. of parameters 188
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.19

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623006399/bv4049sup1.cif

x-08-x230639-sup1.cif (563.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623006399/bv4049Isup2.hkl

x-08-x230639-Isup2.hkl (265.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623006399/bv4049Isup3.png

Supporting information file. DOI: 10.1107/S2414314623006399/bv4049Isup4.mol

Supporting information file. DOI: 10.1107/S2414314623006399/bv4049Isup5.cml

CCDC reference: 2283625

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the National Science Foundation and the University of the District of Columbia (UDC) is gratefully acknowledged.

full crystallographic data

Crystal data

C17H24N2O Dx = 1.115 Mg m3
Mr = 272.38 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pbca Cell parameters from 10946 reflections
a = 10.3939 (1) Å θ = 4.3–77.8°
b = 17.6680 (2) Å µ = 0.54 mm1
c = 17.6653 (2) Å T = 298 K
V = 3244.05 (6) Å3 Needle, clear light colourless
Z = 8 0.06 × 0.03 × 0.02 mm
F(000) = 1184

Data collection

XtaLAB Synergy, Single source at home/near, HyPix diffractometer 3322 independent reflections
Radiation source: micro-focus sealed X-ray tube 2883 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.027
ω scans θmax = 78.0°, θmin = 5.0°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2023) h = −10→12
Tmin = 0.852, Tmax = 1.000 k = −17→22
15515 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.052P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3322 reflections Δρmax = 0.24 e Å3
188 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.00252 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.68510 (9) 0.39486 (6) 0.24909 (6) 0.0447 (3)
N2 0.47630 (10) 0.42156 (6) 0.27067 (6) 0.0354 (3)
H2N 0.3976 (15) 0.4095 (8) 0.2635 (9) 0.039 (4)*
N3 0.63961 (13) 0.41287 (9) 0.43755 (8) 0.0585 (4)
C1 0.57087 (12) 0.38404 (7) 0.23375 (7) 0.0346 (3)
C2 0.53211 (12) 0.32919 (7) 0.17351 (7) 0.0370 (3)
C3 0.62231 (15) 0.27549 (8) 0.15148 (9) 0.0458 (3)
H3 0.702073 0.273870 0.175283 0.055*
C4 0.59447 (18) 0.22447 (8) 0.09449 (10) 0.0563 (4)
H4 0.655468 0.188838 0.079870 0.068*
C5 0.4763 (2) 0.22650 (9) 0.05942 (10) 0.0629 (5)
H5 0.457268 0.191991 0.021279 0.075*
C6 0.38608 (18) 0.27953 (10) 0.08067 (10) 0.0618 (4)
H6 0.306382 0.280710 0.056764 0.074*
C7 0.41359 (14) 0.33116 (9) 0.13756 (9) 0.0485 (4)
H7 0.352624 0.367046 0.151570 0.058*
C8 0.13369 (18) 0.42176 (12) 0.51281 (11) 0.0687 (5)
H8A 0.130708 0.369920 0.496635 0.103*
H8B 0.048757 0.438170 0.526484 0.103*
H8C 0.189651 0.426219 0.555814 0.103*
C9 0.18399 (14) 0.47054 (9) 0.44905 (9) 0.0487 (4)
H9A 0.190157 0.522524 0.466342 0.058*
H9B 0.123469 0.469132 0.407272 0.058*
C10 0.31508 (13) 0.44461 (8) 0.42125 (8) 0.0431 (3)
H10A 0.371536 0.437325 0.464367 0.052*
H10B 0.306043 0.396317 0.395690 0.052*
C11 0.37556 (13) 0.50125 (7) 0.36746 (8) 0.0388 (3)
H11A 0.390117 0.547983 0.394978 0.047*
H11B 0.314076 0.512110 0.327604 0.047*
C12 0.50346 (12) 0.47737 (7) 0.33020 (7) 0.0356 (3)
C13 0.57641 (13) 0.54701 (8) 0.29944 (8) 0.0433 (3)
H13A 0.595421 0.580531 0.341460 0.052*
H13B 0.657822 0.530128 0.278570 0.052*
C14 0.50566 (16) 0.59173 (8) 0.23929 (9) 0.0510 (4)
H14A 0.424038 0.608940 0.259590 0.061*
H14B 0.487752 0.558979 0.196493 0.061*
C15 0.58252 (18) 0.65952 (9) 0.21246 (11) 0.0601 (4)
H15A 0.604988 0.690289 0.255974 0.072*
H15B 0.661983 0.641748 0.189802 0.072*
C16 0.5124 (2) 0.70834 (11) 0.15573 (11) 0.0803 (6)
H16A 0.504894 0.681592 0.108633 0.120*
H16B 0.559606 0.754376 0.147875 0.120*
H16C 0.428131 0.720084 0.174612 0.120*
C17 0.58394 (13) 0.44031 (8) 0.38925 (8) 0.0413 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0285 (5) 0.0569 (6) 0.0487 (5) 0.0014 (4) 0.0003 (4) −0.0047 (5)
N2 0.0269 (5) 0.0385 (6) 0.0409 (6) −0.0016 (4) 0.0001 (4) −0.0063 (4)
N3 0.0533 (8) 0.0720 (9) 0.0503 (7) 0.0081 (7) −0.0086 (6) −0.0002 (6)
C1 0.0304 (6) 0.0375 (6) 0.0359 (6) 0.0015 (5) 0.0029 (5) 0.0027 (5)
C2 0.0373 (7) 0.0361 (6) 0.0377 (6) 0.0003 (5) 0.0048 (5) 0.0007 (5)
C3 0.0473 (8) 0.0395 (7) 0.0506 (8) 0.0057 (6) 0.0068 (6) 0.0012 (6)
C4 0.0712 (11) 0.0392 (7) 0.0584 (9) 0.0067 (7) 0.0142 (8) −0.0052 (7)
C5 0.0875 (13) 0.0489 (9) 0.0523 (9) −0.0082 (8) 0.0043 (9) −0.0148 (7)
C6 0.0600 (10) 0.0696 (11) 0.0558 (9) −0.0041 (8) −0.0106 (8) −0.0160 (8)
C7 0.0430 (8) 0.0544 (8) 0.0482 (8) 0.0044 (6) −0.0027 (6) −0.0104 (6)
C8 0.0595 (10) 0.0813 (12) 0.0653 (11) −0.0059 (9) 0.0233 (9) 0.0014 (9)
C9 0.0400 (8) 0.0557 (8) 0.0505 (8) −0.0011 (6) 0.0079 (6) −0.0062 (7)
C10 0.0412 (7) 0.0439 (7) 0.0442 (7) 0.0006 (6) 0.0068 (6) −0.0020 (6)
C11 0.0358 (7) 0.0384 (7) 0.0422 (7) 0.0023 (5) 0.0031 (5) −0.0042 (5)
C12 0.0314 (6) 0.0374 (6) 0.0380 (6) −0.0012 (5) 0.0000 (5) −0.0041 (5)
C13 0.0384 (7) 0.0405 (7) 0.0509 (8) −0.0066 (6) 0.0051 (6) −0.0052 (6)
C14 0.0580 (9) 0.0457 (8) 0.0491 (8) −0.0105 (7) 0.0018 (7) 0.0016 (6)
C15 0.0675 (11) 0.0460 (8) 0.0668 (10) −0.0092 (8) 0.0102 (9) 0.0051 (7)
C16 0.1201 (18) 0.0588 (11) 0.0620 (11) −0.0232 (11) −0.0118 (12) 0.0109 (9)
C17 0.0350 (7) 0.0459 (7) 0.0428 (7) −0.0001 (6) −0.0003 (6) −0.0064 (6)

Geometric parameters (Å, º)

O1—C1 1.2327 (15) C9—H9A 0.9700
N2—C1 1.3531 (16) C9—H9B 0.9700
N2—C12 1.4691 (16) C10—C11 1.5164 (19)
N2—H2N 0.855 (16) C10—H10A 0.9700
N3—C17 1.1393 (19) C10—H10B 0.9700
C1—C2 1.4946 (18) C11—C12 1.5422 (17)
C2—C7 1.386 (2) C11—H11A 0.9700
C2—C3 1.3894 (19) C11—H11B 0.9700
C3—C4 1.382 (2) C12—C17 1.4888 (19)
C3—H3 0.9300 C12—C13 1.5439 (18)
C4—C5 1.376 (3) C13—C14 1.515 (2)
C4—H4 0.9300 C13—H13A 0.9700
C5—C6 1.377 (3) C13—H13B 0.9700
C5—H5 0.9300 C14—C15 1.516 (2)
C6—C7 1.387 (2) C14—H14A 0.9700
C6—H6 0.9300 C14—H14B 0.9700
C7—H7 0.9300 C15—C16 1.510 (3)
C8—C9 1.512 (2) C15—H15A 0.9700
C8—H8A 0.9600 C15—H15B 0.9700
C8—H8B 0.9600 C16—H16A 0.9600
C8—H8C 0.9600 C16—H16B 0.9600
C9—C10 1.5191 (19) C16—H16C 0.9600
C1—N2—C12 122.30 (11) C9—C10—H10B 109.2
C1—N2—H2N 120.1 (10) H10A—C10—H10B 107.9
C12—N2—H2N 117.2 (10) C10—C11—C12 116.38 (11)
O1—C1—N2 121.18 (12) C10—C11—H11A 108.2
O1—C1—C2 121.11 (11) C12—C11—H11A 108.2
N2—C1—C2 117.71 (11) C10—C11—H11B 108.2
C7—C2—C3 119.23 (13) C12—C11—H11B 108.2
C7—C2—C1 123.33 (12) H11A—C11—H11B 107.3
C3—C2—C1 117.41 (12) N2—C12—C17 108.31 (10)
C4—C3—C2 120.54 (15) N2—C12—C11 108.88 (10)
C4—C3—H3 119.7 C17—C12—C11 107.80 (11)
C2—C3—H3 119.7 N2—C12—C13 112.17 (11)
C5—C4—C3 119.85 (15) C17—C12—C13 108.73 (11)
C5—C4—H4 120.1 C11—C12—C13 110.83 (10)
C3—C4—H4 120.1 C14—C13—C12 115.10 (11)
C4—C5—C6 120.18 (15) C14—C13—H13A 108.5
C4—C5—H5 119.9 C12—C13—H13A 108.5
C6—C5—H5 119.9 C14—C13—H13B 108.5
C5—C6—C7 120.29 (16) C12—C13—H13B 108.5
C5—C6—H6 119.9 H13A—C13—H13B 107.5
C7—C6—H6 119.9 C13—C14—C15 112.07 (14)
C2—C7—C6 119.91 (14) C13—C14—H14A 109.2
C2—C7—H7 120.0 C15—C14—H14A 109.2
C6—C7—H7 120.0 C13—C14—H14B 109.2
C9—C8—H8A 109.5 C15—C14—H14B 109.2
C9—C8—H8B 109.5 H14A—C14—H14B 107.9
H8A—C8—H8B 109.5 C16—C15—C14 113.86 (16)
C9—C8—H8C 109.5 C16—C15—H15A 108.8
H8A—C8—H8C 109.5 C14—C15—H15A 108.8
H8B—C8—H8C 109.5 C16—C15—H15B 108.8
C8—C9—C10 112.28 (14) C14—C15—H15B 108.8
C8—C9—H9A 109.1 H15A—C15—H15B 107.7
C10—C9—H9A 109.1 C15—C16—H16A 109.5
C8—C9—H9B 109.1 C15—C16—H16B 109.5
C10—C9—H9B 109.1 H16A—C16—H16B 109.5
H9A—C9—H9B 107.9 C15—C16—H16C 109.5
C11—C10—C9 112.05 (12) H16A—C16—H16C 109.5
C11—C10—H10A 109.2 H16B—C16—H16C 109.5
C9—C10—H10A 109.2 N3—C17—C12 175.77 (15)
C11—C10—H10B 109.2
C12—N2—C1—O1 0.53 (19) C8—C9—C10—C11 −169.86 (13)
C12—N2—C1—C2 −179.26 (11) C9—C10—C11—C12 −174.73 (12)
O1—C1—C2—C7 −159.19 (14) C1—N2—C12—C17 −55.56 (15)
N2—C1—C2—C7 20.60 (19) C1—N2—C12—C11 −172.52 (11)
O1—C1—C2—C3 18.64 (18) C1—N2—C12—C13 64.45 (15)
N2—C1—C2—C3 −161.57 (12) C10—C11—C12—N2 75.12 (14)
C7—C2—C3—C4 −0.1 (2) C10—C11—C12—C17 −42.17 (15)
C1—C2—C3—C4 −178.02 (13) C10—C11—C12—C13 −161.06 (12)
C2—C3—C4—C5 −0.3 (2) N2—C12—C13—C14 61.10 (15)
C3—C4—C5—C6 0.4 (3) C17—C12—C13—C14 −179.14 (12)
C4—C5—C6—C7 −0.1 (3) C11—C12—C13—C14 −60.82 (15)
C3—C2—C7—C6 0.4 (2) C12—C13—C14—C15 179.43 (13)
C1—C2—C7—C6 178.21 (14) C13—C14—C15—C16 −176.64 (15)
C5—C6—C7—C2 −0.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1i 0.93 2.52 3.3046 (17) 142
N2—H2N···O1i 0.860 (16) 2.229 (16) 3.0829 (13) 171.7 (13)

Symmetry code: (i) x−1/2, y, −z+1/2.

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 2117621 to Xueqing Song); National Science Foundation, Directorate for Education and Human Resources (grant No. 1622811 to Freddie Dixon); National Science Foundation, Directorate for Education and Human Resources (grant No. 1833656 to Freddie Dixon).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Paventi, M., Chubb, F. L. & Edward, J. T. (1987). Can. J. Chem. 65, 2114–2117.
  3. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
  4. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  5. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  6. Shu, L. & Wang, P. (2008). Org. Process Res. Dev. 12, 298–300.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623006399/bv4049sup1.cif

x-08-x230639-sup1.cif (563.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623006399/bv4049Isup2.hkl

x-08-x230639-Isup2.hkl (265.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623006399/bv4049Isup3.png

Supporting information file. DOI: 10.1107/S2414314623006399/bv4049Isup4.mol

Supporting information file. DOI: 10.1107/S2414314623006399/bv4049Isup5.cml

CCDC reference: 2283625

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES