Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Oct 5;79(Pt 11):1003–1007. doi: 10.1107/S205698902300837X

Crystal structure of di­benzyl­ammonium hydrogen (4-amino­phen­yl)arsonate monohydrate

Bocar Traoré a, Waly Diallo a,*, Mamadou Sidibé a, Libasse Diop a, Laurent Plasseraud b, Hélène Cattey b,*
Editor: G Diaz de Delgadoc
PMCID: PMC10626960  PMID: 37936848

The title salt consists of three components, comprising one di­benzyl­ammonium cation, [(C6H5CH2)2NH2]+, one hydrogen (4-amino­phen­yl)arsonate anion, [H2NC6H4As(OH)O2], and one mol­ecule of water. In the crystal, these components are organized in infinite zigzag chains via inter­molecular hydrogen bonds. Weak inter­actions between the chains lead to a three-dimensional network.

Keywords: crystal structure, group 15 - pnictogen elements, organic salt, phenyl­arsonic derivatives, hydrogen bonds, infinite chain

Abstract

The title salt, C14H16N+·C6H7AsNO3 ·H2O or [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O, (I), was synthesized by mixing an aqueous solution of (4-amino­phenyl)­arsonic acid with an ethano­lic solution of di­benzyl­amine at room temperature. Compound I crystallizes in the monoclinic P21/c space group. The three components forming I are linked via N—H⋯O and O—H⋯O inter­molecular hydrogen bonds, resulting in the propagation of an infinite zigzag chain. Additional weak inter­actions between neighbouring chains, such as π–π and N—H⋯O contacts, involving phenyl rings, –NH2 and –As(OH)O3 functions, and H2O, respectively, lead to a three-dimensional network.

1. Chemical context

Organoarsenic compounds have been known for a long time and sparked great inter­est when they were discovered. Tetra­methyl­diarsine (Me2As-AsMe2), commonly known as Cacod­yl, was isolated in the middle of the 18th century by Cadet de Glaussicourt (Garje & Jain, 1999). During the next century, in 1859, Antoine Béchamp reported the synthesis of p-arsanilic acid sodium salt (named Atox­yl) by reacting aniline with arsenic acid. This compound was employed for pharmaceutical applications, in particular against trypanosomal infection. Subsequently, in the early 20th century, Paul Ehrlich was inspired by this work to develop a new organoarsenic derivative, called Arsphenamine or Salvarsan (Ehrlich & Bertheim, 1907). This mol­ecule has proved particularly effective in the treatment of syphilis and sleeping sickness (African Trypanosomiasis) and is considered as being the first chemotherapeutic agent (Williams, 2009). The use of organo­arsenicals as medicines was subsequently abandoned in favour of penicillin, as they were found to be highly toxic to humans, causing significant side effects (including blindness). However, they have continued to be used, until recently, as feed additives and veterinary drugs, particularly in the livestock and poultry breeding industry, but with serious negative effects on the environment. Soil and groundwater contamination resulting from the excessive use of aromatic organoarsenic compounds is now a major environmental concern (Fei et al., 2018). Current investigations involving academics focus on improving analytical detection (Depalma et al., 2008; Yang et al., 2018) and remediation methods (Jun et al., 2015; Chen et al., 2022).

From a structural point of view, the crystal structure of phenyl­arsonic acid was first solved in the early 1960s (refcode ARSACP: Shimada, 1960). Since then, the X-ray structure for the zwitterionic form of p-arsanilic acid (p-ammonio­phenyl­arsonate) has been determined (CUDSEZ: Shimada, 1961; CUDSEZ01: Nuttall & Hunter, 1996) as well as of the hydrated ammonium and sodium salt hydrates of 4-amino­phenyl­arsonic acid (KOKWOY, KOKWUE: Smith & Wermuth, 2014). We report herein the structure of a new salt of 4-amino­phenyl­arsonate, isolated from a mixture of (4-amino­phen­yl)arsonic acid and di­benzyl­amine and characterized as di­benzyl­ammonium hydrogen (4-amino­phen­yl)arsonate monohydrate, [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O (I). 1.

2. Structural commentary

The asymmetric unit of the title salt, which is depicted in Fig. 1, comprises one di­benzyl­ammonium cation [(C6H5CH2)2NH2]+, one hydrogen (4-amino­phen­yl)arsonate anion [H2NC6H5As(OH)O2] and one water mol­ecule of solvation. The three components of I are linked together through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. The As atom of the anion is bonded to three O atoms and one carbon atom of the phenyl ring, describing a slightly distorted tetra­hedral geometry [O1—As—C1 = 103.71 (6)°, O2—As—C1 = 110.47 (6)°, O3—As—C1 = 111.73 (6)°, O2—As—O1 = 110.71 (5)°, O3—As—O1 = 108.46 (5)°, O3—As—O2 = 111.48 (5)°]. The As—O bonds exhibit two distinct lengths: As—O1 = 1.7267 (10) Å, and As—O2 = 1.6730 (10) Å and As—O3 =1.6699 (10) Å, which can be considered to be identical. The As—O1 distance is consistent with the presence of a hydroxyl group (Yang et al., 2002), while the As—O2 and As—O3 distances, which are shorter, reflect rather a double-bond character. In the literature, based on a comparison of structural examples, the average length of the As—O bond is defined as 1.77 Å and that of the As=O bond as 1.67 Å (Nuttall & Hunter, 1996). The nature of the As=O2 and As=O3 double bonds implies that the negative charge is delocalized on the arsonate. The three oxygen atoms of the arsonate function are engaged in hydrogen bonding, the O1 and O2 atoms being linked head-to-tail [O1—H⋯O2iv, DA = 2.5444 (15) Å; symmetry code: (iv) −x, −y + 1, −z + 1, Table 1]. The length of the As—C1 bond [1.8955 (13) Å] is within the range of values measured for related compounds such as ammonium 4-nitro­phenyl­arsonate (Yang et al., 2002) and guanidinium phenyl­arsonate (Smith & Wermuth, 2010). An amino group is positioned on the phenyl ring in the para position to the arsonate function. Both functional groups are contained in the plane of the phenyl ring. The negative charge of [H2NC6H4As(OH)O2] is compensated by the presence of one di­benzyl­ammonium cation, [(C6H5CH2)2NH2]+, whose NH2 + group is hydrogen bonded to the oxygen atom O3 of the arsonate function [N1—H1A⋯O3, DA = 2.6842 (16) Å, N1—H1B⋯O3iii, DA = 2.7260 (15) Å; symmetry code: (iii) −x + 1, −y + 1, −z + 1]. Moreover, the di­benzyl­ammonium cation shows a synanti conformation, displaying C—C—N—C torsion angles of 57.65 (16)° and −178.14 (11)°, which are in the range of previous examples of X-ray structures involving [(C6H5CH2)2NH2]+ (Trivedi & Dastidar, 2006). A water mol­ecule (co-solvent of the reaction) participates in a hydrogen-bond inter­action with the oxygen atom O2 of –As(OH)O2 [O4—H4A⋯O2V, DA = 2.8074 (18) Å; symmetry code: (v) 1 + x, y, z] completes the composition of salt I. From a spectroscopic point of view, the infrared spectrum of I (ATR mode) highlights ν(As—C) and ν(As—O) absorption bands, which are characteristic of the arsonate function (Cowen et al., 2008), at 1096 cm−1 and between 925–690 cm−1, respectively. The percentages of C, H, N and O determined by elemental analysis support the chemical composition of I, but show that the salt is partially dehydrated (see the Synthesis and crystallization section).

Figure 1.

Figure 1

The mol­ecular structure of I with displacement ellipsoids at the 30% probability level.The water mol­ecule was found to be disordered over two positions, the minor part was omitted and the major part is represented with the following symmetry code: (i): −1 + x, y, z. Dotted lines indicate hydrogen bonds.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.84 (2) 2.37 (2) 3.165 (2) 158.0 (18)
N2—H2B⋯O1ii 0.83 (2) 2.25 (2) 3.0769 (17) 175.6 (18)
N1—H1A⋯O3 0.91 1.78 2.6842 (16) 172
N1—H1B⋯O3iii 0.91 1.89 2.7260 (15) 151
O1—H1⋯O2iv 0.83 (3) 1.73 (3) 2.5445 (15) 170 (3)
O4—H4A⋯O2v 0.87 1.95 2.8074 (18) 169

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

3. Supra­molecular features

At the supra­molecular stage, two levels of organization can be observed in the crystal structure of I:

(i) The propagation of one-dimensional zigzag chains along the a-axis direction resulting from the hydrogen-bonding inter­actions (Fig. 2). The NH2 groups of two di­benzyl­ammonium cations are involved in two independent hydrogen bonds, oriented perpendicularly [O3⋯N1⋯O3 = 92.63 (5)°], with the oxygen atoms O3 of two arsonate moieties [N1—H1A⋯O3 and N1—H1B⋯O3iii, Table 1]. This leads to the formation of a tetra­meric unit describing a four-membered ring (Fig. 3). These units are linked together by two additional and parallel hydrogen bonds involving two hydrogen (4-amino­phen­yl)arsonate anions [O1—H1⋯O2iv, Table 1]. This creates a six-membered ring. In addition, the water mol­ecule contained in I is also in hydrogen-bonding inter­action with the oxygen atom O2 of the arsonate group [O4—H4A⋯O2v, Table 1]. The 4-amino­phenyl groups can be viewed as perpendicular to the chain axis and positioned alternately on either side of it.

Figure 2.

Figure 2

Mercury representation (Macrae et al., 2020; colour code: C = grey, N = blue, O = red, As = pink, H = white] of the infinite chain structure of I propagating along the a-axis direction via hydrogen bonds (dotted cyan lines).

Figure 3.

Figure 3

Mercury representation (Macrae et al., 2020; colour code: C = grey, N = blue, O = red, As = pink, H = white) highlighting the hydrogen-bonding network (cyan dotted lines) involving the components of I (the benzyl H atoms have been omitted for clarity).

(ii) The association of chains leading to a three-dimensional network and resulting from a combination of weak inter­actions (Fig. 4). Two types of π–π stacking inter­actions involving the phenyl rings of the di­benzyl­ammonium cations can be described (Fig. 5): (a) centroid(C15–C20)–centroid (C15i–C20i) = 3.9384 (10) Å, inter­planar distance = 3.4310 (18) Å, slip angle (angle between the normal to the plane and the centroid–centroid vector) = 29.4, corresponding to a slippage distance of 1.933 Å; symmetry code: (i) 1 − x, 2 − y, 1 − z; (b) centroid(C8–C13)–centroid(C15ii–C20ii) = 4.0178 (10) Å, inter­planar distance = 3.5093 (6) Å, slip angle = 29.1°, corresponding to a slippage distance of 1.957 Å; symmetry code: (ii) 1 − x, − Inline graphic  + y, Inline graphic  − z. In addition, the NH2 groups located in the para position of C6H4As(OH)O2, inter­act via hydrogen bonding with a water mol­ecule [N2—H2A⋯O41 = 3.165 (2) Å] and the O1 oxygen atom of an adjacent –As(OH)O2 function [N2—H2B⋯O1ii = 3.0769 (17) Å] (symmetry codes as in Table 1).

Figure 4.

Figure 4

Arrangement of the chains in the crystal of I and along the b-axis, leading to a three-dimensional network (Mercury representation; Macrae et al., 2020; colour code: C = grey, N = blue, O = red, As = pink, H = white). H atoms of phenyl and benzyl groups are omitted for clarity. The hydrogen bonds propagating the infinite chains are represented by dotted cyan lines.

Figure 5.

Figure 5

View of the π–π stacking inter­actions between phenyl rings of the di­benzyl­ammonium cations of I [along the a-axis, Mercury representation (Macrae et al., 2020); colour code: C = grey, N = blue, H = white). H atoms of phenyl rings, anions and water mol­ecules have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (WebCSD update 11/2022; Groom et al., 2016), revealed that, to date, there are relatively few X-ray structures exhibiting the isolated hydrogen phenyl­arsonate moiety, C6H5As(OH)O2 . To our knowledge, eleven examples including this fragment have already been identified: ammonium 4-nitro­phenyl­arsonate (AHILAE: Yang et al., 2002), guanidinium phenyl­arsonate guanidine dihydrate (DUSCIE: Smith & Wermuth, 2010), p-amino­phenyl­arsonic acid (CUDSEZ: Shimada, 1961; CUDSEZ01: Nuttall & Hunter, 1996), ammonium hydrogen (4-amino­phen­yl)arsonate monohydrate (KOKWOY: Smith & Wermuth, 2014), 1-(4-hy­droxy-2-methyl­phen­yl)-2,4,6-tri­phenyl­pyridinium hydrogen o-arsanilate monohydrate (PAZRIS: Wojtas et al., 2006), tetra­butyl­ammonium hydrogen phenyl­arsonate–phenyl­arsonic acid (QECBEH: Reck & Schmitt, 2012), 3-ammonio-4-hy­droxy­phenyl­arsonate (ROBDAO: Lloyd et al., 2008), hexa­aqua­manganese(II) bis­[hydrogen (4-amino­phen­yl)arsonate] tetra­hydrate (UBURIV: Smith & Wermuth, 2016a ), hexa­aqua-magnesium bis­(hydrogen (4-amino­phen­yl)arsonate) tetra­hydrate (UDAPIB: Smith & Wermuth, 2017a ), 2,3-dimeth­oxy-10-oxostrychnidin-19-ium hydrogen (4-amino­phen­yl)arsonate tetra­hydrate (ULIROY: Smith & Wermuth, 2016b ), 2,4-di­amino-5-(3,4,5-tri­meth­oxy­benz­yl)pyrimidinium 4-hy­droxy-3-nitro­phenyl­arsonate monohydrate (XEMZIZ: Pan et al., 2006). In coordination chemistry, phenyl­arsonic acid and its derivatives constitute also suitable ligands to generate coordination polymers and heteropolyoxometalates in the presence of transition metals (Lesikar-Parrish et al., 2013), main-group metals (Xie et al., 2008), alkali metals (Smith & Wermuth, 2017a ) and alkali-earth metal precursors (Smith & Wermuth, 2017b ). Regarding the di­benzyl­ammonium cation, [(C6H5CH2)2NH2]+, 117 hits incorporating such an entity were found in the Cambridge Structural Database.

5. Synthesis and crystallization

All chemicals were purchased from Sigma-Aldrich (Germany) and used without any further purification. (4-Amino­phen­yl)arsonic acid [H2NC6H4As(OH)2O] was prepared according to a previous work (Lewis & Cheetham, 1923), by reacting aniline (C6H5NH2) and arsenic acid (As(OH)3O). The title salt was obtained by neutralization of an aqueous solution (20 mL) of (4-amino­phen­yl)arsonic acid (2.15 g, 9.90 mmol) with di­benzyl­amine ((C6H5CH2)2NH) (3.90 g, 19.80 mmol) dissolved in 20 mL of ethanol. The mixture was stirred for about two h at room temperature (301 K). After three days of slow solvent evaporation, colourless prism-shaped crystals of [(C6H5CH2)2NH2][H2NC6H4As(OH)O2]·H2O (5.25 g, 64% yield), suitable for an X-ray crystallographic analysis, were collected from the solvent (m.p. 393 K). FT–IR (ATR, Bruker Alpha FTIR spectrometer, cm−1): 3447, 3304, 3187, 1595, 1501, 1454, 1096, 923, 878, 825,752, 735, 695. Elemental analysis (Elemental Analyser, ThermoFisher FlashSmart CHNS/O) – analysis calculated for C20H23N2O3As·0.25H2O (418.83), salt I partially dehydrated: C, 57.35; H, 5.66; N, 6.69; O, 12.41; found: C, 57.82; H, 5.61; N, 6.62; O, 12.37%.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. The asymmetric unit contains the di­benzyl­ammonium hydrogen (4-amino­phen­yl)arsonate mono­hydrate. The water mol­ecule was found disordered over two main positions with occupancy factors that converged to 0.94:0.06. Hence, the minor part of the water mol­ecule was refined only isotropically and without the hydrogen atoms. The hydrogen atoms for the major component of the water mol­ecule were refined geometrically as a rigid group (O—H = 0.87 Å) with U iso(H) = 1.5U eq(O). C-bound hydrogen atoms were placed at calculated positions [C—H = 0.95 Å (aromatic) or 0.99 Å (methyl­ene group)] and H atoms of the NH2 and OH terminal groups were placed geometrically (N—H = 0.83–0.84 Å, O—H = 0.83 Å) and refined as riding with U iso(H) = 1.2U eq(N, C).

Table 2. Experimental details.

Crystal data
Chemical formula C14H16N+·C6H7AsNO3 ·H2O
M r 432.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.8242 (5), 10.6574 (6), 19.2507 (11)
β (°) 97.7500 (18)
V3) 1997.15 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.73
Crystal size (mm) 0.5 × 0.25 × 0.18
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.610, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 67932, 4584, 4119
R int 0.037
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.022, 0.054, 1.07
No. of reflections 4584
No. of parameters 261
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.21

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698902300837X/dj2065sup1.cif

e-79-01003-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902300837X/dj2065Isup2.hkl

e-79-01003-Isup2.hkl (365.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698902300837X/dj2065Isup3.cml

CCDC reference: 2297206

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for general and financial support from the University Cheikh Anta Diop-Dakar (Senegal), the University of Bourgogne-Dijon (France) and the Centre National de la Recherche Scientifique (CNRS-France). They would like to thank in particular Ms T. Régnier for elemental analysis measurements.

supplementary crystallographic information

Crystal data

C14H16N+·C6H7AsNO3·H2O F(000) = 896
Mr = 432.34 Dx = 1.438 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.8242 (5) Å Cell parameters from 9824 reflections
b = 10.6574 (6) Å θ = 2.8–27.5°
c = 19.2507 (11) Å µ = 1.73 mm1
β = 97.7500 (18)° T = 100 K
V = 1997.15 (19) Å3 Prism, clear light colourless
Z = 4 0.5 × 0.25 × 0.18 mm

Data collection

Bruker D8 VENTURE diffractometer 4584 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-90C 4119 reflections with I > 2σ(I)
TRIUMPH curved crystal monochromator Rint = 0.037
Detector resolution: 1024 x 1024 pixels mm-1 θmax = 27.5°, θmin = 2.8°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −13→13
Tmin = 0.610, Tmax = 0.746 l = −24→25
67932 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0228P)2 + 1.3431P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
4584 reflections Δρmax = 0.42 e Å3
261 parameters Δρmin = −0.21 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
As 0.15165 (2) 0.51188 (2) 0.42563 (2) 0.01186 (5)
O1 0.04372 (11) 0.38487 (9) 0.42927 (6) 0.0184 (2)
O2 0.09995 (10) 0.63317 (9) 0.47065 (5) 0.0167 (2)
O3 0.31128 (10) 0.46779 (10) 0.45696 (5) 0.0176 (2)
N2 0.08041 (14) 0.62660 (14) 0.11336 (7) 0.0208 (3)
H2A 0.062 (2) 0.565 (2) 0.0867 (10) 0.025*
H2B 0.043 (2) 0.694 (2) 0.1009 (10) 0.025*
C1 0.13469 (13) 0.55046 (13) 0.32872 (7) 0.0126 (3)
C2 0.13667 (14) 0.45347 (13) 0.27999 (7) 0.0152 (3)
H2 0.149937 0.369445 0.295952 0.018*
C3 0.11956 (15) 0.47831 (14) 0.20880 (7) 0.0164 (3)
H3 0.121018 0.411363 0.176326 0.020*
C4 0.10001 (14) 0.60216 (14) 0.18428 (7) 0.0150 (3)
C5 0.10337 (14) 0.69966 (13) 0.23332 (8) 0.0166 (3)
H5 0.094757 0.784146 0.217604 0.020*
C6 0.11920 (14) 0.67391 (13) 0.30476 (7) 0.0150 (3)
H6 0.119468 0.740721 0.337450 0.018*
O4 0.94231 (17) 0.85325 (13) 0.45149 (7) 0.0389 (3) 0.94
H4A 0.999317 0.790435 0.455138 0.058* 0.94
H4B 0.870836 0.825432 0.468917 0.058* 0.94
N1 0.43532 (12) 0.63057 (11) 0.55144 (6) 0.0142 (2)
H1A 0.391629 0.570678 0.522995 0.017*
H1B 0.523283 0.604491 0.564385 0.017*
C7 0.36565 (15) 0.64208 (13) 0.61550 (7) 0.0156 (3)
H7A 0.268703 0.667011 0.601690 0.019*
H7B 0.411155 0.708549 0.646221 0.019*
C8 0.37054 (14) 0.52036 (13) 0.65533 (7) 0.0134 (3)
C9 0.49603 (15) 0.46656 (14) 0.68231 (8) 0.0167 (3)
H9 0.579319 0.506225 0.674660 0.020*
C10 0.50021 (15) 0.35571 (14) 0.72019 (8) 0.0194 (3)
H10 0.586162 0.319539 0.738161 0.023*
C11 0.37894 (16) 0.29743 (15) 0.73190 (8) 0.0227 (3)
H11 0.381734 0.221469 0.757878 0.027*
C12 0.25392 (16) 0.35050 (15) 0.70557 (9) 0.0251 (3)
H12 0.170863 0.311054 0.713808 0.030*
C13 0.24933 (15) 0.46135 (15) 0.66711 (8) 0.0200 (3)
H13 0.163208 0.496855 0.648829 0.024*
C14 0.43754 (16) 0.75047 (14) 0.51084 (8) 0.0194 (3)
H14A 0.342130 0.775473 0.493084 0.023*
H14B 0.486851 0.736507 0.469927 0.023*
C15 0.50659 (15) 0.85489 (14) 0.55510 (8) 0.0182 (3)
C16 0.42794 (16) 0.94873 (15) 0.57986 (8) 0.0220 (3)
H16 0.330863 0.947490 0.568182 0.026*
C17 0.49027 (19) 1.04468 (15) 0.62169 (9) 0.0277 (4)
H17 0.435865 1.108628 0.638562 0.033*
C18 0.6313 (2) 1.04676 (17) 0.63861 (9) 0.0322 (4)
H18 0.673979 1.112232 0.667157 0.039*
C19 0.71081 (18) 0.95354 (18) 0.61403 (10) 0.0323 (4)
H19 0.807876 0.955423 0.625699 0.039*
C20 0.64919 (16) 0.85748 (16) 0.57247 (9) 0.0249 (3)
H20 0.703946 0.793541 0.555854 0.030*
H1 0.002 (3) 0.386 (3) 0.4638 (14) 0.062 (8)*
O4B 0.729 (2) 0.7346 (18) 0.4434 (10) 0.026 (4)* 0.06

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
As 0.01149 (7) 0.01330 (7) 0.01092 (7) −0.00011 (5) 0.00195 (5) −0.00127 (5)
O1 0.0235 (5) 0.0140 (5) 0.0192 (5) −0.0066 (4) 0.0084 (4) −0.0043 (4)
O2 0.0200 (5) 0.0125 (5) 0.0187 (5) −0.0005 (4) 0.0070 (4) −0.0030 (4)
O3 0.0143 (5) 0.0226 (5) 0.0150 (5) 0.0041 (4) −0.0009 (4) −0.0025 (4)
N2 0.0233 (7) 0.0235 (7) 0.0151 (6) 0.0019 (6) 0.0010 (5) 0.0037 (5)
C1 0.0096 (6) 0.0163 (6) 0.0119 (6) −0.0005 (5) 0.0018 (5) 0.0004 (5)
C2 0.0157 (7) 0.0132 (6) 0.0164 (7) 0.0004 (5) 0.0011 (5) 0.0009 (5)
C3 0.0179 (7) 0.0164 (7) 0.0147 (7) 0.0000 (5) 0.0013 (5) −0.0022 (5)
C4 0.0097 (6) 0.0198 (7) 0.0158 (7) 0.0003 (5) 0.0026 (5) 0.0029 (5)
C5 0.0149 (7) 0.0140 (6) 0.0211 (7) 0.0016 (5) 0.0035 (5) 0.0042 (5)
C6 0.0127 (6) 0.0147 (6) 0.0179 (7) −0.0005 (5) 0.0035 (5) −0.0018 (5)
O4 0.0569 (10) 0.0308 (7) 0.0304 (7) 0.0169 (7) 0.0104 (7) 0.0108 (6)
N1 0.0149 (6) 0.0140 (6) 0.0132 (6) −0.0003 (4) 0.0007 (4) 0.0000 (4)
C7 0.0170 (7) 0.0144 (6) 0.0160 (7) 0.0009 (5) 0.0045 (5) −0.0008 (5)
C8 0.0143 (6) 0.0137 (6) 0.0123 (6) −0.0003 (5) 0.0023 (5) −0.0020 (5)
C9 0.0129 (6) 0.0194 (7) 0.0181 (7) −0.0015 (5) 0.0031 (5) 0.0003 (6)
C10 0.0160 (7) 0.0223 (7) 0.0198 (7) 0.0047 (6) 0.0016 (6) 0.0031 (6)
C11 0.0253 (8) 0.0182 (7) 0.0247 (8) 0.0005 (6) 0.0043 (6) 0.0059 (6)
C12 0.0172 (7) 0.0229 (8) 0.0354 (9) −0.0053 (6) 0.0044 (7) 0.0068 (7)
C13 0.0119 (7) 0.0214 (7) 0.0260 (8) −0.0005 (5) −0.0001 (6) 0.0028 (6)
C14 0.0230 (8) 0.0187 (7) 0.0161 (7) −0.0018 (6) 0.0010 (6) 0.0048 (6)
C15 0.0204 (7) 0.0173 (7) 0.0169 (7) −0.0042 (6) 0.0022 (6) 0.0057 (6)
C16 0.0226 (8) 0.0191 (7) 0.0246 (8) −0.0032 (6) 0.0050 (6) 0.0045 (6)
C17 0.0409 (10) 0.0180 (7) 0.0256 (8) −0.0041 (7) 0.0095 (7) 0.0018 (6)
C18 0.0434 (10) 0.0244 (8) 0.0276 (9) −0.0172 (8) 0.0004 (8) 0.0012 (7)
C19 0.0237 (8) 0.0356 (10) 0.0358 (10) −0.0118 (7) −0.0023 (7) 0.0051 (8)
C20 0.0207 (8) 0.0257 (8) 0.0283 (8) −0.0022 (6) 0.0037 (6) 0.0044 (7)

Geometric parameters (Å, º)

As—O1 1.7267 (10) C7—C8 1.5044 (19)
As—O2 1.6730 (10) C8—C9 1.395 (2)
As—O3 1.6699 (10) C8—C13 1.392 (2)
As—C1 1.8955 (13) C9—H9 0.9500
O1—H1 0.83 (3) C9—C10 1.386 (2)
N2—H2A 0.84 (2) C10—H10 0.9500
N2—H2B 0.83 (2) C10—C11 1.389 (2)
N2—C4 1.3776 (19) C11—H11 0.9500
C1—C2 1.3978 (19) C11—C12 1.385 (2)
C1—C6 1.3957 (19) C12—H12 0.9500
C2—H2 0.9500 C12—C13 1.392 (2)
C2—C3 1.384 (2) C13—H13 0.9500
C3—H3 0.9500 C14—H14A 0.9900
C3—C4 1.406 (2) C14—H14B 0.9900
C4—C5 1.401 (2) C14—C15 1.506 (2)
C5—H5 0.9500 C15—C16 1.387 (2)
C5—C6 1.391 (2) C15—C20 1.396 (2)
C6—H6 0.9500 C16—H16 0.9500
O4—H4A 0.8696 C16—C17 1.391 (2)
O4—H4B 0.8701 C17—H17 0.9500
N1—H1A 0.9100 C17—C18 1.380 (3)
N1—H1B 0.9100 C18—H18 0.9500
N1—C7 1.4939 (17) C18—C19 1.386 (3)
N1—C14 1.4995 (18) C19—H19 0.9500
C7—H7A 0.9900 C19—C20 1.387 (2)
C7—H7B 0.9900 C20—H20 0.9500
O1—As—C1 103.71 (6) C13—C8—C7 120.22 (13)
O2—As—O1 110.71 (5) C13—C8—C9 119.09 (13)
O2—As—C1 110.47 (6) C8—C9—H9 119.7
O3—As—O1 108.46 (5) C10—C9—C8 120.55 (13)
O3—As—O2 111.48 (5) C10—C9—H9 119.7
O3—As—C1 111.73 (5) C9—C10—H10 120.0
As—O1—H1 113.0 (19) C9—C10—C11 120.09 (14)
H2A—N2—H2B 116.7 (18) C11—C10—H10 120.0
C4—N2—H2A 116.7 (13) C10—C11—H11 120.1
C4—N2—H2B 116.7 (13) C12—C11—C10 119.73 (14)
C2—C1—As 119.52 (10) C12—C11—H11 120.1
C6—C1—As 121.39 (10) C11—C12—H12 119.8
C6—C1—C2 119.08 (13) C11—C12—C13 120.33 (14)
C1—C2—H2 119.6 C13—C12—H12 119.8
C3—C2—C1 120.83 (13) C8—C13—H13 119.9
C3—C2—H2 119.6 C12—C13—C8 120.20 (14)
C2—C3—H3 119.8 C12—C13—H13 119.9
C2—C3—C4 120.33 (13) N1—C14—H14A 109.2
C4—C3—H3 119.8 N1—C14—H14B 109.2
N2—C4—C3 120.31 (13) N1—C14—C15 111.83 (12)
N2—C4—C5 120.99 (13) H14A—C14—H14B 107.9
C5—C4—C3 118.69 (13) C15—C14—H14A 109.2
C4—C5—H5 119.7 C15—C14—H14B 109.2
C6—C5—C4 120.62 (13) C16—C15—C14 119.86 (14)
C6—C5—H5 119.7 C16—C15—C20 119.40 (14)
C1—C6—H6 119.8 C20—C15—C14 120.73 (14)
C5—C6—C1 120.37 (13) C15—C16—H16 119.8
C5—C6—H6 119.8 C15—C16—C17 120.45 (15)
H4A—O4—H4B 104.5 C17—C16—H16 119.8
H1A—N1—H1B 107.7 C16—C17—H17 120.1
C7—N1—H1A 108.8 C18—C17—C16 119.86 (16)
C7—N1—H1B 108.8 C18—C17—H17 120.1
C7—N1—C14 113.62 (11) C17—C18—H18 119.9
C14—N1—H1A 108.8 C17—C18—C19 120.13 (16)
C14—N1—H1B 108.8 C19—C18—H18 119.9
N1—C7—H7A 109.4 C18—C19—H19 119.9
N1—C7—H7B 109.4 C18—C19—C20 120.25 (16)
N1—C7—C8 111.30 (11) C20—C19—H19 119.9
H7A—C7—H7B 108.0 C15—C20—H20 120.0
C8—C7—H7A 109.4 C19—C20—C15 119.91 (16)
C8—C7—H7B 109.4 C19—C20—H20 120.0
C9—C8—C7 120.67 (13)
As—C1—C2—C3 177.66 (11) N1—C14—C15—C20 74.49 (17)
As—C1—C6—C5 −178.33 (10) C7—N1—C14—C15 57.65 (16)
O1—As—C1—C2 −44.30 (12) C7—C8—C9—C10 178.70 (13)
O1—As—C1—C6 135.23 (11) C7—C8—C13—C12 −178.27 (14)
O2—As—C1—C2 −162.96 (10) C8—C9—C10—C11 −0.3 (2)
O2—As—C1—C6 16.57 (13) C9—C8—C13—C12 0.3 (2)
O3—As—C1—C2 72.32 (12) C9—C10—C11—C12 0.0 (2)
O3—As—C1—C6 −108.15 (11) C10—C11—C12—C13 0.4 (3)
N2—C4—C5—C6 178.11 (13) C11—C12—C13—C8 −0.6 (2)
C1—C2—C3—C4 0.1 (2) C13—C8—C9—C10 0.2 (2)
C2—C1—C6—C5 1.2 (2) C14—N1—C7—C8 −178.14 (11)
C2—C3—C4—N2 −178.78 (13) C14—C15—C16—C17 179.01 (14)
C2—C3—C4—C5 2.3 (2) C14—C15—C20—C19 −179.17 (15)
C3—C4—C5—C6 −3.0 (2) C15—C16—C17—C18 0.1 (2)
C4—C5—C6—C1 1.3 (2) C16—C15—C20—C19 −0.1 (2)
C6—C1—C2—C3 −1.9 (2) C16—C17—C18—C19 0.0 (3)
N1—C7—C8—C9 60.72 (17) C17—C18—C19—C20 −0.2 (3)
N1—C7—C8—C13 −120.76 (14) C18—C19—C20—C15 0.2 (3)
N1—C14—C15—C16 −104.55 (16) C20—C15—C16—C17 0.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O4i 0.84 (2) 2.37 (2) 3.165 (2) 158.0 (18)
N2—H2B···O1ii 0.83 (2) 2.25 (2) 3.0769 (17) 175.6 (18)
N1—H1A···O3 0.91 1.78 2.6842 (16) 172
N1—H1B···O3iii 0.91 1.89 2.7260 (15) 151
O1—H1···O2iv 0.83 (3) 1.73 (3) 2.5445 (15) 170 (3)
O4—H4A···O2v 0.87 1.95 2.8074 (18) 169

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1; (v) x+1, y, z.

References

  1. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, H., Liu, W., Cheng, L., Meledina, M., Meledin, A., Van Deun, R., Leus, K. & Van Der Voort, P. (2022). Chem. Eng. J. 429, 132162.
  4. Cowen, S., Duggal, M., Hoang, T. & Al-Abadleh, H. A. (2008). Can. J. Chem. 86, 942–950.
  5. Depalma, S. S. C. O. T. T., Cowen, S., Hoang, T. & Al-Abadleh, H. A. (2008). Environ. Sci. Technol. 42, 1922–1927. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Ehrlich, P. & Bertheim, A. (1907). Ber. Dtsch. Chem. Ges. 40, 3292–3297.
  8. Fei, J., Wang, T., Zhou, Y., Wang, Z., Min, X., Ke, Y., Hu, W. & Chai, L. (2018). Chemosphere, 207, 665–675. [DOI] [PubMed]
  9. Garje, S. S. & Jain, V. K. (1999). Main Group Met. Chem. 22, 45–58.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Jun, J. W., Tong, M., Jung, B. K., Hasan, Z., Zhong, C. & Jhung, S. H. (2015). Chem. Eur. J. 21, 347–354. [DOI] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432.
  14. Lewis, W. L. & Cheetham, H. C. (1923). Org. Synth. 3, 13–16.
  15. Lloyd, N. C., Morgan, H. W., Nicholson, B. K. & Ronimus, R. S. (2008). J. Organomet. Chem. 693, 2443–2450.
  16. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  17. Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683.
  18. Pan, T.-T., Liu, B.-X. & Xu, D.-J. (2006). Acta Cryst. E62, m2198–m2199.
  19. Reck, L. & Schmitt, W. (2012). Acta Cryst. E68, m1212–m1213. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Shimada, A. (1960). Bull. Chem. Soc. Jpn, 33, 301–304.
  23. Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643.
  24. Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1893–o1894. [DOI] [PMC free article] [PubMed]
  25. Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741. [DOI] [PubMed]
  26. Smith, G. & Wermuth, U. D. (2016a). IUCrData, 1, x161985.
  27. Smith, G. & Wermuth, U. D. (2016b). Acta Cryst. E72, 751–755. [DOI] [PMC free article] [PubMed]
  28. Smith, G. & Wermuth, U. D. (2017a). Acta Cryst. E73, 203–208. [DOI] [PMC free article] [PubMed]
  29. Smith, G. & Wermuth, U. D. (2017b). Acta Cryst. C73, 61–67. [DOI] [PubMed]
  30. Trivedi, D. R. & Dastidar, P. (2006). Cryst. Growth Des. 6, 2115-2121.
  31. Williams, K. J. (2009). J. R. Soc. Med. 102, 343–348. [DOI] [PMC free article] [PubMed]
  32. Wojtas, Ł., Milart, P. & Stadnicka, K. (2006). J. Mol. Struct. 782, 157–164.
  33. Xie, Y.-P., Yang, J., Ma, J.-F., Zhang, L.-P., Song, S.-Y. & Su, Z.-M. (2008). Chem. Eur. J. 14, 4093–4103. [DOI] [PubMed]
  34. Yang, J., Ma, J.-F., Liu, Y.-C., Zheng, G.-L., Li, L., Liu, J.-F., Hu, N.-H. & Jia, H.-Q. (2002). Acta Cryst. C58, m613–m614. [DOI] [PubMed]
  35. Yang, T., Wang, L., Liu, Y., Jiang, J., Huang, Z., Pang, S.-Y., Cheng, H., Gao, D. & Ma, J. (2018). Environ. Sci. Technol. 52, 13325–13335. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698902300837X/dj2065sup1.cif

e-79-01003-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902300837X/dj2065Isup2.hkl

e-79-01003-Isup2.hkl (365.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698902300837X/dj2065Isup3.cml

CCDC reference: 2297206

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES