Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2023 Sep 26;52(5):567–577. [Article in Chinese] doi: 10.3724/zdxbyxb-2023-0263

腺苷对肿瘤获得性免疫的抑制作用及干预策略

Inhibitory effect of adenosine on adaptive antitumor immunity and intervention strategies

王 龙胜 1,3, 张 文欣 1, 张 洁 1, 郑 铭铭 1, 潘 孝汇 1, 郭 弘洁 1, 丁 玲 1,✉,
Editors: 沈 敏, 刘 丽娜
PMCID: PMC10630057  PMID: 37916308

Abstract

以肿瘤微环境中缺少免疫细胞浸润为特征的“冷肿瘤”通常对免疫治疗的响应性低,探究“冷肿瘤”形成的原因并进行干预,从而将其变成“热肿瘤”是提高免疫治疗疗效的重要策略。作为腺苷三磷酸的水解产物,腺苷在肿瘤微环境中的浓度显著高于正常组织,对肿瘤获得性免疫具有抑制作用。肿瘤细胞、树突状细胞、巨噬细胞及T淋巴细胞的表面有丰富的腺苷受体,腺苷与受体结合后可以启动下游信号通路来抑制肿瘤的抗原提呈和免疫细胞活化,从而抑制肿瘤的获得性免疫。腺苷可下调树突状细胞和巨噬细胞上主要组织相容性复合体Ⅱ和共刺激因子的表达,从而抑制抗原向T淋巴细胞的提呈。腺苷抑制T淋巴细胞上T细胞受体与配体结合和跨膜信号传导,同时能抑制抗肿瘤细胞因子分泌从而抑制T淋巴细胞的激活。腺苷也通过抑制趋化因子的分泌和KCa3.1通道从而抑制效应T淋巴细胞运输至肿瘤部位并浸润。此外,腺苷通过促进免疫抑制性细胞因子的分泌、增加免疫检查点蛋白表达、提高免疫抑制性细胞的活性等途径遏制细胞毒性T细胞对肿瘤细胞的杀伤作用。鉴于腺苷对肿瘤获得性免疫的抑制作用,目前已有多种抑制腺苷生成或阻断腺苷受体的抑制剂正处于临床前或临床研发阶段,旨在增强其他免疫疗法的效果。本文总结分析腺苷对肿瘤获得性免疫的抑制作用及分子机制,并对抑制腺苷途径在抗肿瘤免疫中的最新应用进展进行综述。

Keywords: 腺苷, 肿瘤微环境, 免疫抑制, 靶向药物, 综述


以免疫检查点抑制剂为代表的免疫治疗在多种肿瘤的治疗中已取得了突破性进展,开启了肿瘤治疗的新时代。但仍有很大一部分肿瘤因为肿瘤微环境中没有或仅有少量免疫细胞而对免疫治疗响应性低,成为“冷肿瘤”,从而导致单独使用免疫治疗效果不佳1-2。深入探究“冷肿瘤”形成的原因进而采用对应的联合疗法重塑肿瘤微环境是提高免疫治疗效果的重要策略。近年研究表明,肿瘤微环境中极高浓度的腺苷不仅能抑制CTL的浸润,而且对肿瘤获得性免疫有显著的抑制作用,从而促进了“冷肿瘤”的形成3-4。腺苷主要由胞外ATP在两种腺苷生成酶CD39和CD73依次作用下降解生成5-6。正常生理条件下腺苷的浓度仅0.05~0.20 µmol/L,其作为ATP与ADP的组成部分,调控ATP与ADP的水平,在维持细胞的能量平衡和代谢中发挥关键作用7-8。而在实体瘤缺氧的肿瘤微环境中,一方面肿瘤细胞会释放出大量ATP,直接导致其降解产物腺苷增多;另一方面,HIF的分泌促进CD39和CD73的转录和表达,可增强ATP的降解,进一步增加肿瘤微环境中的腺苷浓度,通过以上两个途径,腺苷浓度可升高至1~10 mmol/L8-11

腺苷通过与腺苷受体结合触发信号级联进而发挥免疫抑制功能。目前已知的腺苷受体包括四种G蛋白偶联受体:A1R、A2aR、A2bR和A3R,其中A2aR和A2bR为免疫细胞主要表达的类型12。A2aR广泛存在于多种免疫细胞中,而A2bR则主要由巨噬细胞和树突状细胞表达13。腺苷与树突状细胞和巨噬细胞上的A2aR/A2bR结合抑制其抗原提呈功能;也与T淋巴细胞上的A2aR结合激活cAMP-PKA-CSK信号通路并抑制趋化因子的分泌,从而抑制T淋巴细胞的激活和浸润,促进“冷肿瘤”的形成;能够通过外在和内在调节机制诱导效应T细胞的功能耗竭。

基于腺苷对肿瘤获得性免疫的抑制作用,抑制腺苷的生成或阻断腺苷与受体的相互作用有可能改善肿瘤微环境,提高免疫治疗。目前,已有多种抑制腺苷生成或阻断腺苷受体的拮抗剂处于临床前或临床研发阶段。本文根据文献详细阐述了腺苷在调节肿瘤获得性免疫各个阶段的抑制作用及其作用机制,同时阐述了拮抗腺苷肿瘤获得性免疫抑制作用的干预策略。

1. 腺苷抑制肿瘤获得性免疫的机制

在肿瘤免疫周期中,腺苷通过与参与肿瘤免疫循环的各种细胞包括肿瘤细胞上的腺苷受体结合,激活腺苷受体进行不同的信号传导,从而发挥免疫抑制作用(图1)。

图1. 腺苷对肿瘤微环境中免疫细胞的抑制作用示意图(使用BioRender绘制).

图1

腺苷通过与免疫细胞上的腺苷受体结合,触发cAMP-PKA信号通路,抑制免疫细胞抗肿瘤细胞因子的释放和促进促肿瘤细胞因子的分泌,以及抑制抗原提呈细胞CD86、MHC Ⅱ的表达. ATP:腺苷三磷酸;cAMP:环腺苷酸;PKA:蛋白激酶A;CREB:cAMP反应元件结合蛋白;EPAC:cAMP激活的交换蛋白;NF-κB:核因子κB;CRE:cAMP反应元件;MHC:主要组织相容性复合体;TNF:肿瘤坏死因子.

1.1. 抑制肿瘤抗原提呈

树突状细胞捕获肿瘤相关抗原并和共刺激分子(如CD80和CD86)与抗原形成同源肽-MHC复合物,然后提呈至T淋巴细胞使其激活。目前很多研究明确了腺苷对树突状细胞的抑制作用,成熟树突状细胞主要表达A2aR和A2bR,腺苷能激活树突状细胞上的A2aR和A2bR,提高树突状细胞内cAMP水平,cAMP通过PKA-EPAC信号传导抑制CD86共刺激信号表达并下调MHC Ⅱ表达,同时EPAC可抑制NF-κB信号通路,导致IL-12和TNF-α等细胞因子分泌减少,IL-6、IL-10、TGF-β和VEGF等促肿瘤因子产生增加,从而降低树突状细胞的抗原提呈能力14-16。同时,腺苷/cAMP信号传导可以靶向PKA-EPAC途径,将活化的树突状细胞极化为促肿瘤的抑制表型,抑制促炎性细胞因子的产生,从而抑制T淋巴细胞的活化17。腺苷也能抑制具有抗原提呈功能的巨噬细胞。腺苷结合巨噬细胞上的A2bR,抑制CD86共刺激信号和MCH Ⅱ表达,从而抑制巨噬细胞的抗原提呈能力7。在路易斯肺癌小鼠模型中,阻断A2bR能明显增强巨噬细胞的抗原提呈并增加CD8+ T细胞反应,进而抑制肿瘤生长18

1.2. 抑制T淋巴细胞激活

TCR识别同源肽-MHC复合物后,TCR-CD3复合物发生聚集,其胞内区域被酪氨激酶LCK磷酸化,然后通过基于免疫受体酪氨酸的激活基序磷酸化启动信号传导,导致ZAP-70与CD3ζ相互作用,进而激活T淋巴细胞19-20。腺苷可以下调树突状细胞上MHC Ⅱ的表达,从而抑制CD4 T细胞的激活。同时,T淋巴细胞中A2aR表达丰富,腺苷结合A2aR能触发cAMP-PKA-CSK通路,然后CSK磷酸化并使LCK失活,减少T淋巴细胞活化期间TCR/CD3ζ链的酪氨酸磷酸化,从而破坏T淋巴细胞的TCR跨膜信号传导21-23。CSK激活会抑制T淋巴细胞上IL-2R信号传导,抑制共刺激分子CD28的表达,从而抑制CD4 T细胞的活化和增殖24-25。而CD4 T细胞的激活也促进CD8 T细胞的激活及活化26。此外,激活A2aR可以触发cAMP-PKA-CREB信号传导,其中CREB能抑制NF-κB和活化的T细胞核因子,导致IL-2、IL-4、IL-5、IL-6、IL-17、γ干扰素和TNF-α等抗肿瘤细胞因子分泌减少,从而抑制CD4+和CD8+ T细胞的活化27。CD4+ T细胞表面的TCR与肿瘤相关抗原结合后可促进γ干扰素的产生,γ干扰素促进T淋巴细胞的分化和活化,而腺苷激活T淋巴细胞表面A2aR会抑制TCR触发的跨膜信号传导,导致TCR介导的γ干扰素减少98%,进而破坏CD8+ T细胞的功能28

1.3. 抑制T淋巴细胞运输和浸润

将效应T细胞运输至肿瘤微环境并浸润肿瘤细胞是癌症免疫反应的关键步骤,其循环并进入肿瘤组织主要通过趋化因子及其受体相互作用实现29。CXCL9和CXCL10的表达和产生主要由γ干扰素诱导30-32。在实体瘤肿瘤微环境中,腺苷不断累积并通过激活A2aR来抑制肿瘤特异性T淋巴细胞的趋化反应和肿瘤浸润水平33。腺苷结合效应T细胞上的A2aR,激活cAMP-PKA信号通路,导致γ干扰素的分泌显著减少,肿瘤细胞CXCL9和CXCL10等趋化因子表达量显著降低,从而抑制效应T细胞向肿瘤部位募集和浸润,促进“冷肿瘤”的形成34-35。研究表明,在乳腺癌肿瘤小鼠模型中,阻断腺苷受体可导致γ干扰素诱导的CXCL10产生增加,促进T淋巴细胞募集并抑制肿瘤生长36;在黑色素瘤肺转移小鼠模型中,肿瘤微环境中腺苷信号传导抑制了晚期转移性病变中CXCL9和CXCL10的产生,从而减少效应T细胞的浸润;在A2aR缺陷的B16F10和SM1WT1肿瘤小鼠模型中,CD8+ T细胞向肿瘤的浸润增强,从而显著抑制肿瘤生长37;在头颈部鳞状细胞癌小鼠模型中,小分子抑制剂SCH58261阻断A2aR后可以增加肿瘤浸润CD8+ T细胞数,并且使CD8+ T细胞中γ干扰素和TNF-α表达增加,从而增强肿瘤杀伤作用38。但腺苷的存在会降低头颈部鳞状细胞癌CD8+ T细胞的趋化性,其对头颈部鳞状细胞癌CD8+ T细胞的影响大于健康供者CD8+ T细胞33

离子通道可调节T淋巴细胞的细胞因子产生和趋化能力等多种功能39-41。在T淋巴细胞中,KCa3.1通道能控制细胞的趋化性,并介导腺苷的抑制作用39。腺苷能通过A2aR刺激cAMP生成和PKA激活,PKA能抑制KCa3.1通道,降低T淋巴细胞的趋化性,从而抑制T淋巴细胞的迁移42-43。在头颈部鳞状细胞癌CD8+ T细胞中,腺苷浓度升高导致KCa3.1通道活性降低,使用1-EBIO激活KCa3.1通道可恢复头颈部鳞状细胞癌中CD8+ T细胞的趋化能力3343

1.4. 诱导T淋巴细胞功能耗竭

肿瘤微环境中CTL会因为效应细胞因子的减少、抑制受体的增加和细胞毒性的减弱而耗尽,从而导致肿瘤免疫逃逸。肿瘤微环境中T淋巴细胞的耗竭调控机制可分为外在途径和内在途径44

1.4.1. 通过外在途径促进T淋巴细胞耗竭

外在途径中,调节性T细胞、肿瘤相关巨噬细胞、MDSC和肿瘤细胞是介导T淋巴细胞耗竭的主要外源细胞44-46,IL-10和TGF-β也是参与T淋巴细胞耗尽过程的重要外在细胞因子47-48。调节性T细胞、MDSC和肿瘤细胞通过释放TGF-β抑制CTL的功能,M2型巨噬细胞通过表达STAT3促进CTL的耗竭49-50。并且肿瘤细胞也分泌吲哚胺2,3-双加氧酶1、PD-L1、环加氧酶2和STAT3等免疫抑制介质,抑制肿瘤相关巨噬细胞中CTL的活性;调节性T细胞也表达免疫检查点受体蛋白,抑制CD8+ T细胞的活性51-52。而腺苷可以增强抑制性免疫细胞活性,进而达到抑制杀伤性T细胞功能的效果53。腺苷可结合CD4 T细胞上的A2aR,通过激活Foxp3和LAG-3促进其分化为调节性T细胞,同时增加免疫抑制细胞因子的分泌,而CD4+ Foxp3+调节性T细胞的增加抑制了CTL的肿瘤杀伤作用54。此外,调节性T细胞能促进CD39和CD73的表达并增加肿瘤微环境中腺苷的积累,从而促进A2aR和A2bR信号通路的旁分泌或自分泌刺激,形成正向反馈,进一步促进调节性T细胞的抑制功能55-56。在头颈部鳞状细胞癌小鼠模型中,表达A2aR的调节性T细胞数增加,使用拮抗剂SCH58261阻断A2aR后可抑制肿瘤生长,诱导CD4+ Foxp3+调节性T细胞减少,同时增强CTL的抗肿瘤反应38。在慢性淋巴细胞白血病小鼠模型体内使用A2aR抑制剂会重新激活T淋巴细胞,同时限制了调节性T细胞的扩增57。对荷瘤小鼠给予高氧呼吸,可以减少肿瘤缺氧,抑制肿瘤微环境中缺氧驱动的细胞外腺苷积累,削弱了调节性T细胞的免疫抑制作用58

在肿瘤微环境中,巨噬细胞在TNF-α、γ干扰素、IL-12、Toll样受体等因素的刺激下可以极化为M1型巨噬细胞,发挥抗肿瘤作用;而在VEGF、IL-10、IL-13、TGF-β和前列腺素E2等细胞因子的刺激下极化为M2型巨噬细胞,M2型巨噬细胞可抑制T淋巴细胞功能并促进T淋巴细胞耗竭,从而促进肿瘤增殖和转移59。腺苷激活巨噬细胞上的A2aR,上调cAMP水平,通过触发cAMP-PKA和PI3K-PKC-HIF1信号通路促进VEGF的分泌;同时腺苷也能激活巨噬细胞上A2bR,通过触发MAPK-AP-1信号通路进而导致VEGF分泌增加,微环境中VEGF浓度增加有利于巨噬细胞发生M2型极化760。且腺苷结合A2aR后可通过cAMP-PKA通路激活核受体家族4A转录因子,同时也触发cAMP-EMAC-p38-CREB信号通路,两条通路均抑制了NF-κB的活化,使IL-12和TNF-α表达减少,导致巨噬细胞向M2型极化61-64。此外,cAMP水平上调可以触发EPAC-p38-C/EBP信号通路,促使IL-10分泌增加,导致巨噬细胞极化为M2型巨噬细胞65

MDSC在肿瘤微环境中具有抑制CTL的肿瘤杀伤能力,且腺苷可以激活MDSC上的A2bR以促进其进一步扩增66。在黑色素瘤小鼠模型中,阻断腺苷-A2bR信号传导可减少MDSC积累,恢复CTL的功能并减少MDSC介导的肿瘤生长和免疫抑制作用67。同时,在路易斯肺癌小鼠模型中,腺苷促进CD11b+ Gr1+ MDSC的扩增,促进MDSC对T淋巴细胞的抑制作用68

1.4.2. 通过内在途径促进T淋巴细胞耗竭

腺苷可激活T淋巴细胞上的A2aR,增加PD-1、CTLA4和LAG-3等免疫检查点蛋白的表达。选择性A2aR激动剂ATL313可促进腺苷-A2aR信号传导,增加T淋巴细胞上PD-1和CTLA-4的表达,从而抑制T淋巴细胞的功能,减弱免疫激活69。在MC38-OVA荷瘤小鼠模型中,腺苷受体激动剂NECA可显著增加抗原特异性CD8+肿瘤浸润淋巴细胞和CD4+ Foxp3+肿瘤浸润淋巴细胞上PD-1的表达水平,而A2aR拮抗剂SCH58261处理荷瘤小鼠可抑制NECA介导的肿瘤浸润淋巴细胞PD-1上调70。同时,使用CPI-444阻断A2aR可降低CD8+ T细胞和Foxp3+ CD4+调节性T细胞上PD-1和LAG-3等多个检查点通路的表达,降低荷瘤小鼠引流淋巴结中PD-1和LAG-3的表达71。此外,Notch1稳定表达可以增加CD8 T细胞对肿瘤诱导的免疫抑制的抵抗力,且与维持T淋巴细胞功能和γ干扰素产生增加相关72。在活化的CD8+ T细胞中,激活A2aR通过抑制上游TCR中ZAP-70磷酸化进而降低Notch1蛋白表达,抑制活性Notch1细胞内结构域的生成,最终抑制CD8+ T细胞的功能54。综上,在内在途径中,腺苷与受体结合会增加免疫检查点受体的表达,而免疫检查点受体和同源配体的结合会抑制CTL的肿瘤杀伤能力并耗尽T淋巴细胞,导致肿瘤细胞逃脱宿主细胞的免疫监视。

2. 针对抑制肿瘤获得性免疫的干预策略

在肿瘤微环境中,腺苷对肿瘤获得性免疫具有抑制作用,但其半衰期短于10 s,直接靶向腺苷并不现实,因此大量临床前和临床研究尝试通过靶向腺苷生成酶(CD39和CD73)抑制腺苷生成或阻断A2aR来破坏免疫抑制,同时与免疫检查点抑制剂联用可以增强治疗效果(附表1)。

2.1. 靶向腺苷生成酶和A2aR

在多种肿瘤模型中,靶向CD39/CD73的单克隆抗体和抑制剂有显著的抗肿瘤作用。在黑色素瘤小鼠模型中,抗CD39单克隆抗体可促进γ干扰素释放来杀死癌细胞73。在乳腺癌荷瘤小鼠模型中,抗CD73单克隆抗体3F7显著抑制了肿瘤生长和转移74。在人上皮性卵巢癌小鼠异种移植模型中,CD73抑制剂APCP能阻断CD73,促进肿瘤消退,增强T淋巴细胞的抗肿瘤反应并增加小鼠存活率75-76。越来越多的临床前研究表明,拮抗A2aR可显著增强抗肿瘤免疫,在靶向腺苷信号的药物中,A2aR阻断剂是目前研究最为广泛、证据最充分的药物,且A2aR抑制剂可通过增强CTL的效应功能和阻断肿瘤微环境中免疫抑制性免疫细胞的募集和极化来增加抗肿瘤作用77-78

在临床试验阶段,靶向CD39或CD73的单克隆抗体和小分子抑制剂也有显著的治疗效果。CD39抑制剂ES002023通过稳定细胞外ATP和抑制肿瘤微环境内腺苷的合成来恢复抗肿瘤免疫(NCT05075564)。CD73选择性抑制剂AB680具有良好的药代动力学特性,已进入Ⅰ期临床试验。在一项Ⅰb/Ⅱ期临床试验(NCT03381274)中,抗CD73单克隆抗体MEDI9447联合酪氨酸激酶抑制剂奥希替尼在既往接受治疗的晚期EGFR突变NSCLC患者中具有中等活性和可接受耐受性79。目前,进入临床试验的A2aR抑制剂有CPI-444、NIR178、AZD4635等。一项Ⅰ/Ⅱ期临床试验(NCT02403193)显示,24例晚期NSCLC患者对NIR178具有良好的耐受性,不良反应可控且无第四级药物相关不良事件80

2.2. 联合免疫检查点抑制剂

目前,免疫检查点抑制剂已被应用于越来越多肿瘤的治疗,其对重塑肿瘤微环境具有巨大的潜力1。然而,免疫检查点抑制剂治疗的低反应率、缺乏已知生物标志物、免疫相关毒性、先天性和获得性耐药性等多种问题仍有待解决,这也限制了其临床应用81。许多研究和临床试验尝试将抑制腺苷途径与免疫检查点抑制剂联合使用来破坏免疫抑制,增强抗肿瘤效果(附表1)。在多种荷瘤小鼠模型中,抗CD73单克隆抗体可以增强PD-1单抗的免疫治疗效果7082-84。如A2aR拮抗剂CPI-444可恢复体外腺苷抑制的T淋巴细胞信号传导、IL-2和γ干扰素产生,将CPI-444与抗PD-L1或抗CTLA-4治疗结合使用,消除90%治疗小鼠的肿瘤,且部分对抗PD-L1或抗CTLA-4单药治疗无反应的小鼠恢复了免疫反应85

在Ⅰ/Ⅰb期临床试验(NCT02655822)中,68例肾细胞癌患者(肿瘤主要为PD-L1阴性且其中大多数对抗PD-1/PD-L1抗体耐药或难治性)接受了CPI-444或CPI-444联合阿替利珠单抗治疗,结果显示,单药治疗患者中位无进展生存期为4.1个月,而联合治疗效果更显著,中位无进展生存期为5.8个月,6个月的疾病控制率为39%,25个月的总存活率达90%86。在CD73抗体MEDI9447联合durvalumab(抗PD-1)治疗结直肠癌和胰腺癌患者的早期试验中,联合治疗安全性可控,患者有临床应答;在NSCLC患者Ⅲ期临床试验中进行的随机2期COAST试验(NCT03822351)结果显示,在使用抗CD73单克隆抗体oleclumab联合durvalumab双重阻断CD73/PD-L1组中,患者客观缓解率接近40%,与单独使用抗PD-L1比较,10个月无进展生存期有明显改善(分别为39.2%和64.8%)[见OVERMAN M J, LORUSSO P, STRICKLER J H, et al. 2018 ASCO Annual Meeting Ⅰ “Safety, efficacy and pharmacodynamics (PD) of MEDI9447 (oleclumab) alone or in combination with durvalumab in advanced colorectal cancer (CRC) or pancreatic cancer (panc)”]。最近一项Ⅰ期临床试验(NCT02403193)表明,A2aR抑制剂NIRI178和抗PD-1单抗spartalizumab联合治疗的NSCLC患者达到疾病稳定的比例(14/25)显著高于PD-1单抗单独治疗(7/25)87。在其他许多临床试验中,A2aR抑制剂免疫疗法联合免疫检查点抑制剂在许多类型的癌症患者中也均显示出良好的治疗效果2788-89。在一项针对晚期转移性去势抵抗性前列腺癌患者的Ⅰa/b期临床试验(NCT02740985)中,联合应用A2aR抑制剂AZD4635与durvalumab的患者客观缓解率为16.2%(6/37),其治疗效果优于durvalumab单独治疗(2/33)90。以上数据说明,腺苷途径抑制剂可以增强免疫检查点抑制剂的抗肿瘤效果,两者联合使用对于临床抗肿瘤治疗将是一种有效的组合策略。

2.3. 腺苷信号通路成员多重抑制

为更完全地抑制腺苷的产生和受体信号传导,许多研究尝试将联合使用拮抗腺苷途径中的不同成员来协同抑制肿瘤生长。在临床前模型中,A2aR与CD73双重阻断的抗肿瘤效果优于单药治疗3791。小分子CD73抑制剂聚氧钨酸钠和A2aR抑制剂AZD4635联合使用可阻断腺苷信号通路,激活免疫细胞、增加γ干扰素的产生,并降低调节性T细胞的丰度92。在体外骨髓瘤和基质细胞共培养系统中组合使用抗CD39单克隆抗体IPH5201和抗CD73单克隆抗体IPH5301能协同抑制腺苷生成,从而降低T淋巴细胞的抑制作用93。此外,数项临床试验正在对A2aR和CD73联合靶向治疗进行测试,包括在EGFR突变NSCLC患者(NCT03381274)和前列腺癌患者(NCT04089553)。一项Ⅰ期临床试验报告分别使用CPI-444和CPI-006联合抑制A2aR和CD73的治疗效果明显优于单独使用CPI-006,并且不良事件发生率未显著增加94

3. 结语

肿瘤微环境中腺苷浓度较正常生理水平显著升高,腺苷通过激活腺苷受体抑制肿瘤获得性免疫细胞,形成免疫抑制性肿瘤微环境;其对肿瘤抗原提呈、T淋巴细胞激活和浸润及CTL杀伤肿瘤细胞的过程均产生抑制作用,从而促进肿瘤免疫逃逸。

腺苷途径作为治疗靶点的研究仍处于早期阶段,根据临床前研究和临床试验数据,靶向该途径是一种可行的肿瘤治疗策略。但根据迄今的临床前和临床试验数据,仅阻断腺苷生成未能产生显著的治疗效果,因此最佳组合疗法和给药方案仍值得进一步研究。同时,在腺苷途径抑制剂的开发过程中,仍存在一些问题需要探究:①无法在类似肿瘤模型中同时对CD39、CD73和A2aR靶点的治疗潜力进行比较;②需要注意腺苷生成酶的非酶活性,CD73不仅在肿瘤细胞和免疫细胞中表达,其在各种正常细胞上也有表达,因此全身给予CD73抑制剂会产生不良反应,且人源CD73基因突变会导致动脉和手足关节钙化,增加心血管疾病风险95;③在抑制CD73和/或CD39时,产生腺苷的其他途径是否会发生代偿作用进而导致肿瘤耐药;④目前是否需要同时抑制腺苷途径的多个成分来克服腺苷的免疫抑制和促肿瘤免疫逃逸作用等。

针对免疫检查点抑制剂临床耐药问题,免疫抑制性肿瘤微环境是癌症免疫治疗成功的主要障碍,肿瘤微环境中效应T细胞的浸润程度低、CTL杀伤功能抑制、免疫抑制细胞的积累均会导致肿瘤耐药,对免疫检查点抑制剂反应降低。由于腺苷广泛的免疫抑制作用,阻断腺苷途径则有利于消除免疫抑制性肿瘤微环境,同时有越来越多的腺苷抑制剂联合免疫检查点抑制剂的临床试验正在开展,相对于单药治疗具有更显著的疗效,且在肿瘤微环境中增加CTL浸润水平,因此靶向腺苷途径对解决临床上癌症免疫治疗耐药问题具有巨大潜力。

Supplementary information

本文附表见电子版。

Acknowledgments

研究得到国家自然科学基金(82273949)支持

Acknowledgments

This study was supported by National Natural Science Foundation of China (82273949)

[缩略语]

细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL);腺苷三磷酸(adenosine triphosphate,ATP);腺苷二磷酸(adenosine diphosphate,ADP);缺氧诱导因子(hypoxia-inducible factor,HIF);环腺苷酸(cyclic adenylic acid,cAMP);蛋白激酶A(protein kinase A,PKA);C末端Src激酶(C-terminal Src kinase,CSK);主要组织相容性复合体(major histocompatibility complex,MHC);cAMP激活的交换蛋白(exchange protein activated by cAMP,EPAC);核因子κB(nuclear factor-κB,NF-κB);肿瘤坏死因子(tumor necrosis factor,TNF);转化生长因子(transforming growth factor,TGF);血管内皮生长因子(vascular endothelial growth factor,VEGF);T细胞受体(T cell receptor,TCR);淋巴细胞特异性蛋白酪氨酸激酶(lymphocyte specific protein tyrosine kinase,LCK);cAMP反应元件结合蛋白(cAMP response element binding protein,CREB);趋化因子CXC亚家族配体(CXC subfamily ligand,CXCL);骨髓来源抑制性细胞(myeloid-derived suppressor cell,MDSC);信号转导及转录激活蛋白(signal transducer and activator of transcription,STAT);程序性死亡受体配体(programmed death-ligand,PD-L);叉头框P3(forkhead box P3,Foxp3);淋巴细胞活化基因蛋白(lymphocyte activation gene protein,LAG);程序性死亡受体(programmed death,PD);CTL相关抗原(CTL-associated antigen,CTLA);表皮生长因子受体(epidermal growth factor receptor,EGFR);非小细胞肺癌(non-small cell lung carcinoma,NSCLC)

利益冲突声明

所有作者均声明不存在利益冲突

Conflict of Interests

The authors declare that there is no conflict of interests

参考文献(References)

  • 1.YI M, ZHENG X, NIU M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022, 21(1): 28. 10.1186/s12943-021-01489-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.MAJIDPOOR J, MORTEZAEE K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives[J]. Clin Immunol, 2021, 226: 108707. 10.1016/j.clim.2021.108707 [DOI] [PubMed] [Google Scholar]
  • 3.张芷菁, 张启怡, 金祖翼, 等. 靶向腺苷A2A受体的肿瘤免疫治疗研究进展[J]. 药学学报, 2022, 57(9): 2557-2569. [Google Scholar]; ZHANG Zhijing, ZHANG Qiyi, JIN Zuyi, et al. Progress for targeting adenosine A2A receptors in cancer immunotherapy[J]. Acta Pharmaceutica Sinica, 2022, 57(9): 2557-2569. (in Chinese) [Google Scholar]
  • 4.LIU H Y, WANG F H, LIANG J M, et al. Targeting NAD metabolism regulates extracellular adenosine levels to improve the cytotoxicity of CD8+ effector T cells in the tumor microenvironment of gastric cancer[J]. J Cancer Res Clin Oncol, 2023, 149(7): 2743-2756. 10.1007/s00432-022-04124-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.VIJAYAN D, YOUNG A, TENG M, et al. Targeting immunosuppressive adenosine in cancer[J]. Nat Rev Cancer, 2017, 17(12): 709-724. 10.1038/nrc.2017.86 [DOI] [PubMed] [Google Scholar]
  • 6.BOISON D, YEGUTKIN G G. Adenosine metabolism: emerging concepts for cancer therapy[J]. Cancer Cell, 2019, 36(6): 582-596. 10.1016/j.ccell.2019.10.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.ALLARD B, ALLARD D, BUISSERET L, et al. The adenosine pathway in immuno-oncology[J]. Nat Rev Clin Oncol, 2020, 17(10): 611-629. 10.1038/s41571-020-0382-2 [DOI] [PubMed] [Google Scholar]
  • 8.YEGUTKIN G G, BOISON D. ATP and adenosine metabolism in cancer: exploitation for therapeutic gain[J]. Pharmacol Rev, 2022, 74(3): 797-822. 10.1124/pharmrev.121.000528 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.CRONSTEIN B N, SITKOVSKY M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases[J]. Nat Rev Rheumatol, 2017, 13(1): 41-51. 10.1038/nrrheum.2016.178 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.HATFIELD S M, KJAERGAARD J, LUKASHEV D, et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection[J]. J Mol Med (Berl), 2014, 92(12): 1283-1292. 10.1007/s00109-014-1189-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.SITKOVSKY M V, HATFIELD S, ABBOTT R, et al. Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists[J]. Cancer Immunol Res, 2014, 2(7): 598-605. 10.1158/2326-6066.cir-14-0075 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.XIA C, YIN S, TO K, et al. CD39/CD73/A2AR pathway and cancer immunotherapy[J]. Mol Cancer, 2023, 22(1): 44. 10.1186/s12943-023-01733-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.PANTHER E, IDZKO M, HEROUY Y, et al. Expression and function of adenosine receptors in human dendritic cells[J]. FASEB J, 2001, 15(11): 1963-1970. 10.1096/fj.01-0169com [DOI] [PubMed] [Google Scholar]
  • 14.NOVITSKIY S V, RYZHOV S, ZAYNAGETDINOV R, et al. Adenosine receptors in regulation of dendritic cell differentiation and function[J]. Blood, 2008, 112(5): 1822-1831. 10.1182/blood-2008-02-136325 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.WILSON J M, ROSS W G, AGBAI O N, et al. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells[J]. J Immunol, 2009, 182(8): 4616-4623. 10.4049/jimmunol.0801279 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.KAMBAYASHI T, WALLIN R P, LJUNGGREN H G. cAMP-elevating agents suppress dendritic cell function[J]. J Leukoc Biol, 2001, 70(6): 903-910. 10.1189/jlb.70.6.903 [DOI] [PubMed] [Google Scholar]
  • 17.KAYHAN M, KOYAS A, AKDEMIR I, et al. Adenosine receptor signaling targets both PKA and EPAC pathways to polarize dendritic cells to a suppressive phenotype[J]. J Immunol, 2019, 203(12): 3247-3255. 10.4049/jimmunol.1900765 [DOI] [PubMed] [Google Scholar]
  • 18.CHEN S, AKDEMIR I, FAN J, et al. The expression of adenosine A2B receptor on antigen-presenting cells suppresses CD8(+) T-cell responses and promotes tumor growth[J]. Cancer Immunol Res, 2020, 8(8): 1064-1074. 10.1158/2326-6066.cir-19-0833 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.JENKINS M K, SCHWARTZ R H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo [J]. J Exp Med, 1987, 165(2): 302-319. 10.1084/jem.165.2.302 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.ALCOVER A, ALARCÓN B, DI BARTOLO V. Cell biology of T cell receptor expression and regulation[J]. Annu Rev Immunol, 2018, 36: 103-125. 10.1146/annurev-immunol-042617-053429 [DOI] [PubMed] [Google Scholar]
  • 21.MASTELIC-GAVILLET B, NAVARRO RODRIGO B, DÉCOMBAZ L, et al. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8(+) T cells[J]. J Immunother Cancer, 2019, 7(1): 257. 10.1186/s40425-019-0719-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.HUANG S, APASOV S, KOSHIBA M, et al. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion[J]. Blood, 1997, 90(4): 1600-1610. 10.1182/blood.v90.4.1600.1600_1600_1610 [DOI] [PubMed] [Google Scholar]
  • 23.VANG T, TORGERSEN K M, SUNDVOLD V, et al. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor[J]. J Exp Med, 2001, 193(4): 497-507. 10.1084/jem.193.4.497 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.ZAREK P E, HUANG C T, LUTZ E R, et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells[J]. Blood, 2008, 111(1): 251-259. 10.1182/blood-2007-03-081646 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.BUTLER J J, MADER J S, WATSON C L, et al. Adenosine inhibits activation-induced T cell expression of CD2 and CD28 co-stimulatory molecules: role of interleukin-2 and cyclic AMP signaling pathways[J]. J Cell Biochem, 2003, 89(5): 975-991. 10.1002/jcb.10562 [DOI] [PubMed] [Google Scholar]
  • 26.AHRENDS T, BĄBAŁA N, XIAO Y, et al. CD27 agonism plus PD-1 blockade recapitulates CD4+ T-cell help in therapeutic anticancer vaccination[J]. Cancer Res, 2016, 76(10): 2921-2931. 10.1158/0008-5472.can-15-3130 [DOI] [PubMed] [Google Scholar]
  • 27.SUN C, WANG B, HAO S. Adenosine-A2A receptor pathway in cancer immunotherapy[J]. Front Immunol, 2022, 13: 837230. 10.3389/fimmu.2022.837230 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.LAPPAS C M, RIEGER J M, LINDEN J. A2A adenosine receptor induction inhibits IFN-gamma pro-duction in murine CD4+ T cells[J]. J Immunol, 2005, 174(2): 1073-1080. 10.4049/jimmunol.174.2.1073 [DOI] [PubMed] [Google Scholar]
  • 29.SLANEY C Y, KERSHAW M H, DARCY P K. Trafficking of T cells into tumors[J]. Cancer Res, 2014, 74(24): 7168-7174. 10.1158/0008-5472.can-14-2458 [DOI] [PubMed] [Google Scholar]
  • 30.RESCHKE R, GAJEWSKI T F. CXCL9 and CXCL10 bring the heat to tumors[J]. Sci Immunol, 2022, 7(73): eabq6509. 10.1126/sciimmunol.abq6509 [DOI] [PubMed] [Google Scholar]
  • 31.HOUSE I G, SAVAS P, LAI J, et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade[J]. Clin Cancer Res, 2020, 26(2): 487-504. 10.1158/1078-0432.ccr-19-1868 [DOI] [PubMed] [Google Scholar]
  • 32.CLANCY-THOMPSON E, PEREKSLIS T J, CROTEAU W, et al. Melanoma induces, and adenosine suppresses, CXCR3-cognate chemokine production and T-cell infiltration of lungs bearing metastatic-like disease[J]. Cancer Immunol Res, 2015, 3(8): 956-967. 10.1158/2326-6066.cir-15-0015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.CHIMOTE A A, BALAJTHY A, ARNOLD M J, et al. A defect in KCa3.1 channel activity limits the ability of CD8(+) T cells from cancer patients to infiltrate an adenosine-rich microenvironment[J]. Sci Signal, 2018, 11(527): eaaq1616. 10.1126/scisignal.aaq1616 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.NAZARI A, AHMADI Z, HASSANSHAHI G, et al. Effective treatments for bladder cancer affecting CXCL9/CXCL10/CXCL11/CXCR3 axis: a review[J/OL]. Oman Med J, 2020, 35(2): e103. 10.5001/omj.2020.21 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.KEATING G M. Apremilast: a review in psoriasis and psoriatic arthritis[J]. Drugs, 2017, 77(4): 459-472. 10.1007/s40265-017-0709-1 [DOI] [PubMed] [Google Scholar]
  • 36.CEKIC C, SAG D, LI Y, et al. Adenosine A2B receptor blockade slows growth of bladder and breast tumors[J]. J Immunol, 2012, 188(1): 198-205. 10.4049/jimmunol.1101845 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.YOUNG A, NGIOW S F, BARKAUSKAS D S, et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses[J]. Cancer Cell, 2016, 30(3): 391-403. 10.1016/j.ccell.2016.06.025 [DOI] [PubMed] [Google Scholar]
  • 38.MA S R, DENG W W, LIU J F, et al. Blockade of adenosine A2A receptor enhances CD8(+) T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma[J]. Mol Cancer, 2017, 16(1): 99. 10.1186/s12943-017-0665-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.KURAS Z, YUN Y H, CHIMOTE A A, et al. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells[J/OL]. PLoS One, 2012, 7(8): e43859. 10.1371/journal.pone.0043859 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.FESKE S, SKOLNIK E Y, PRAKRIYA M. Ion channels and transporters in lymphocyte function and immunity[J]. Nat Rev Immunol, 2012, 12(7): 532-547. 10.1038/nri3233 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.NEWTON H S, GAWALI V S, CHIMOTE A A, et al. PD1 blockade enhances K(+) channel activity, Ca(2+) signaling, and migratory ability in cytotoxic T lympho-cytes of patients with head and neck cancer[J/OL]. J Immunother Cancer, 2020, 8(2): e000844. 10.1136/jitc-2020-000844 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.CHIMOTE A A, HAJDU P, KUCHER V, et al. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells[J]. J Immunol, 2013, 191(12): 6273-6280. 10.4049/jimmunol.1300702 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.CHIMOTE A A, GAWALI V S, NEWTON H S, et al. A compartmentalized reduction in membrane-proximal calmodulin reduces the immune surveillance capabilities of CD8(+) T cells in head and neck cancer[J]. Front Pharmacol, 2020, 11: 143. 10.3389/fphar.2020.00143 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.JIANG Y, LI Y, ZHU B. T-cell exhaustion in the tumor microenvironment[J/OL]. Cell death Dis, 2015, 6(6): e1792. 10.1038/cddis.2015.162 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.ZHANG Y, LAZARUS J, STEELE N G, et al. Regula-tory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis[J]. Cancer Discov, 2020, 10(3): 422-439. 10.1158/2159-8290.CD-19-0958 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.NIXON B G, KUO F, JI L, et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer[J]. Immunity, 2022, 55(11): 2044-2058.e5. 10.1016/j.immuni.2022.10.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.DAMO M, JOSHI N S. T(reg) cell IL-10 and IL-35 exhaust CD8(+) T cells in tumors[J]. Nat Immunol, 2019, 20(6): 674-675. 10.1038/s41590-019-0389-y [DOI] [PubMed] [Google Scholar]
  • 48.XIE F, ZHOU X, SU P, et al. Breast cancer cell-derived extracellular vesicles promote CD8(+) T cell exhaustion via TGF-β type Ⅱ receptor signaling[J]. Nat Commun, 2022, 13(1): 4461. 10.1038/s41467-022-31250-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.CHAN M K, CHUNG J Y, TANG P C, et al. TGF-β signaling networks in the tumor microenvironment[J]. Cancer Lett, 2022, 550: 215925. 10.1016/j.canlet.2022.215925 [DOI] [PubMed] [Google Scholar]
  • 50.LAINÉ A, LABIAD O, HERNANDEZ-VARGAS H, et al. Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation[J]. Nat Commun, 2021, 12(1): 6228. 10.1038/s41467-021-26352-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.DONG H W, WANG K, CHANG X X, et al. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity[J]. Arch Toxicol, 2019, 93(10): 2993-3003. 10.1007/s00204-019-02550-2 [DOI] [PubMed] [Google Scholar]
  • 52.FARHOOD B, NAJAFI M, MORTEZAEE K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review[J]. J Cell Physiol, 2019, 234(6): 8509-8521. 10.1002/jcp.27782 [DOI] [PubMed] [Google Scholar]
  • 53.STOCKIS J, ROYCHOUDHURI R, HALIM T Y F. Regulation of regulatory T cells in cancer[J]. Immu-nology, 2019, 157(3): 219-231. 10.1111/imm.13064 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.SORRENTINO C, HOSSAIN F, RODRIGUEZ P C, et al. Adenosine A2A receptor stimulation inhibits TCR-induced Notch1 activation in CD8+ T-cells[J]. Front Immunol, 2019, 10: 162. 10.3389/fimmu.2019.00935 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.ZHULAI G A, OLEINIK E K, CHUROV A V, et al. Significance of Treg cells for adenosine-mediated immune suppression in colorectal cancer[J]. Medical Immu-nology (Russia), 2017, 19(1): 89. 10.15789/1563-0625-2017-1-89-94 [DOI] [Google Scholar]
  • 56.ZHULAI G A, CHUROV A V, OLEINIK E K, et al. Activation of CD4+ CD39+ T cells in colorectal canser[J]. Bulletin of RSMU, 2018, 2018(3): 47-53. 10.24075/brsmu.2018.027 [DOI] [Google Scholar]
  • 57.ARRUGA F, SERRA S, VITALE N, et al. Targeting of the A2A adenosine receptor counteracts immuno-suppression in vivo in a mouse model of chronic lymphocytic leukemia[J]. Haematologica, 2021, 106(5): 1343-1353. 10.3324/haematol.2019.242016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.HATFIELD S M, KJAERGAARD J, LUKASHEV D, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation[J]. Sci Transl Med, 2015, 7(277): 277ra30. 10.1126/scitranslmed.aaa1260 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.JAYASINGAM S D, CITARTAN M, THANG T H, et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice[J]. Front Oncol, 2019, 9: 1512. 10.3389/fonc.2019.01512 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.LUDWIG N, YERNENI S S, AZAMBUJA J H, et al. Tumor-derived exosomes promote angiogenesis via adenosine A(2B) receptor signaling[J]. Angiogenesis, 2020, 23(4): 599-610. 10.1007/s10456-020-09728-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.CEKIC C, LINDEN J. Purinergic regulation of the immune system[J]. Nat Rev Immunol, 2016, 16(3): 177-192. 10.1038/nri.2016.4 [DOI] [PubMed] [Google Scholar]
  • 62.MCEVOY C, DE GAETANO M, GIFFNEY H E, et al. NR4A receptors differentially regulate NF-κB signaling in myeloid cells[J]. Front Immunol, 2017, 8: 7. 10.3389/fimmu.2017.00007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.POOREBRAHIM M, MELIEF J, PICO DE COAÑA Y, et al. Counteracting CAR T cell dysfunction[J]. Oncogene, 2021, 40(2): 421-435. 10.1038/s41388-020-01501-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.EL-SHAMARKA M E, EL-SAHAR A E, SAAD M A, et al. Inosine attenuates 3-nitropropionic acid-induced Huntington’s disease-like symptoms in rats via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway[J]. Life Sci, 2022, 300: 120569. 10.1016/j.lfs.2022.120569 [DOI] [PubMed] [Google Scholar]
  • 65.MILNE G R, PALMER T M. Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor[J]. Sci World J, 2011, 11: 320-339. 10.1100/tsw.2011.22 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.HINSHAW D C, SHEVDE L A. The tumor micro-environment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566. 10.1158/0008-5472.can-18-3962 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.IANNONE R, MIELE L, MAIOLINO P, et al. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma[J]. Neoplasia, 2013, 15(12): 1400-1409. 10.1593/neo.131748 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.RYZHOV S, NOVITSKIY S V, GOLDSTEIN A E, et al. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells[J]. J Immunol, 2011, 187(11): 6120-6129. 10.4049/jimmunol.1101225 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.SEVIGNY C P, LI L, AWAD A S, et al. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition[J]. J Immunol, 2007, 178(7): 4240-4249. 10.4049/jimmunol.178.7.4240 [DOI] [PubMed] [Google Scholar]
  • 70.ALLARD B, POMMEY S, SMYTH M J, et al. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs[J]. Clin Cancer Res, 2013, 19(20): 5626-5635. 10.1158/1078-0432.ccr-13-0545 [DOI] [PubMed] [Google Scholar]
  • 71.LEONE R D, SUN I M, OH M H, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models[J]. Cancer Immunol Immun-other, 2018, 67(8): 1271-1284. 10.1007/s00262-018-2186-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.OSBORNE B A, MINTER L M. Notch signalling during peripheral T-cell activation and differentiation[J]. Nat Rev Immunol, 2007, 7(1): 64-75. 10.1038/nri1998 [DOI] [PubMed] [Google Scholar]
  • 73.YAN J, LI X Y, ROMAN AGUILERA A, et al. Control of metastases via myeloid CD39 and NK cell effector function[J]. Cancer Immunol Res, 2020, 8(3): 356-367. 10.1158/2326-6066.cir-19-0749 [DOI] [PubMed] [Google Scholar]
  • 74.QIAO Z, LI X, KANG N, et al. A novel specific anti-CD73 antibody inhibits triple-negative breast cancer cell motility by regulating autophagy[J]. Int J Mol Sci, 2019, 20(5): 1057. 10.3390/ijms20051057 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.JIN D, FAN J, WANG L, et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression[J]. Cancer Res, 2010, 70(6): 2245-2255. 10.1158/0008-5472.can-09-3109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.HÄUSLER S F, MONTALBÁN DEL BARRIO I, STROHSCHEIN J, et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity[J]. Cancer Immunol Immunother, 2011, 60(10): 1405-1418. 10.1007/s00262-011-1040-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.CHEN L, LI L, ZHOU C, et al. Adenosine A2A receptor activation reduces brain metastasis via SDF-1/CXCR4 axis and protecting blood-brain barrier[J]. Mol Carcinog, 2020, 59(4): 390-398. 10.1002/mc.23161 [DOI] [PubMed] [Google Scholar]
  • 78.SITKOVSKY M, LUKASHEV D, DEAGLIO S, et al. Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells[J]. Br J Pharmacol, 2008, 153(Suppl 1): S457-S464. 10.1038/bjp.2008.23 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.KIM D W, KIM S W, CAMIDGE D R, et al. CD73 inhibitor oleclumab plus osimertinib in previously treated patients with advanced T790M-negative EGFR-mutated NSCLC: a brief report[J]. J Thorac Oncol, 2023, 18(5): 650-656. 10.1016/j.jtho.2022.12.021 [DOI] [PubMed] [Google Scholar]
  • 80.CHIAPPORI A, WILLIAMS C, CREELAN B, et al. P1. 04-32 Phase Ⅰ/Ⅱ study of the A2AR antagonist NIR178 (PBF-509), an oral immunotherapy, in patients (pts) with advanced NSCLC[J]. J Thorac Oncol, 2018, 13(10): S538. 10.1016/j.jtho.2018.08.747 [DOI] [Google Scholar]
  • 81.WU M, HUANG Q, XIE Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via com-bination therapy and PD-L1 regulation[J]. J Hematol Oncol, 2022, 15(1): 24. 10.1186/s13045-022-01242-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.LIU S, LI D, LIU J, et al. A novel CD73 inhibitor SHR170008 suppresses adenosine in tumor and enhances anti-tumor activity with PD-1 blockade in a mouse model of breast cancer[J]. Onco Targets Ther, 2021, 14: 4561-4574. 10.2147/ott.s326178 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.TURCOTTE M, ALLARD D, MITTAL D, et al. CD73 promotes resistance to HER2/ErbB2 antibody therapy[J]. Cancer Res, 2017, 77(20): 5652-5663. 10.1158/0008-5472.can-17-0707 [DOI] [PubMed] [Google Scholar]
  • 84.TURIELLO R, CAPONE M, GIANNARELLI D, et al. Serum CD73 is a prognostic factor in patients with metastatic melanoma and is associated with response to anti-PD-1 therapy[J/OL]. J Immunother Cancer, 2020, 8(2): e001689. 10.1136/jitc-2020-001689 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.WILLINGHAM S B, HO P Y, HOTSON A, et al. A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L) 1 and anti-CTLA-4 in preclinical models[J]. Cancer Immunol Res, 2018, 6(10): 1136-1149. 10.1158/2326-6066.cir-18-0056 [DOI] [PubMed] [Google Scholar]
  • 86.FONG L, HOTSON A, POWDERLY J D, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer[J]. Cancer Discov, 2020, 10(1): 40-53. 10.1158/2159-8290.cd-19-0980 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.MARTINEZ-MARTI A, MAJEM M, BARLESI F, et al. LBA42 COAST: an open-label, randomised, phase Ⅱ platform study of durvalumab alone or in combination with novel agents in patients with locally advanced, unresectable, stage Ⅲ NSCLC[J]. Ann Oncol, 2021, 32: S1320. 10.1016/j.annonc.2021.08.2121 [DOI] [Google Scholar]
  • 88.CHIAPPORI A A, CREELAN B, TANVETYANON T, et al. Phase I study of Taminadenant (PBF509/NIR178), an adenosine 2A receptor antagonist, with or without Spartalizumab (PDR001), in patients with advanced non-small cell lung cancer[J]. Clin Cancer Res, 2022, 28(11): 2313-2320. 10.1158/1078-0432.ccr-21-2742 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.POWDERLY J, SPIRA A, GUTIERREZ R, et al. 1206P-Phase Ⅰ evaluation of AB928, a novel dual adenosine receptor antagonist, combined with chemo-therapy or AB122 (anti-PD-1) in patients (pts) with advanced malignancies[J]. Ann Oncol, 2019, 30(Supple 5): v493. 10.1093/annonc/mdz253.032 [DOI] [Google Scholar]
  • 90.LIM E A, BENDELL J C, FALCHOOK G S, et al. Phase Ⅰa/b, open-label, multicenter study of AZD4635 (an adenosine A2A receptor antagonist) as monotherapy or combined with durvalumab, in patients with solid tumors[J]. Clin Cancer Res, 2022, 28(22): 4871-4884. 10.1158/1078-0432.ccr-22-0612 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.MA XL, SHEN M N, HU B, et al. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis[J]. J Hematol Oncol, 2019, 12(1): 37. 10.1186/s13045-019-0724-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.YANG R, ELSAADI S, MISUND K, et al. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade[J/OL]. J Immunother Cancer, 2020, 8(1): e000610. 10.1136/jitc-2020-000610 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.PERROT I, MICHAUD H A, GIRAUDON-PAOLI M, et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies[J]. Cell Rep, 2019, 27(8): 2411-2425.e9. 10.1016/j.celrep.2019.04.091 [DOI] [PubMed] [Google Scholar]
  • 94.LUKE J, MERCHAN J, HARSHMAN L, et al. Immunobiology and clinical activity of CPI-006, an anti-CD73 antibody with immunomodulating properties in a phase 1/1b trial in advanced cancers[J]. J Immun-other Cancer, 2019, 37(15_suppl): 2505. [Google Scholar]
  • 95.HILAIRE C ST, ZIEGLER S G, MARKELLO T C, et al. NT5E mutations and arterial calcifications[J]. N Engl J Med, 2011, 364(5): 432-442. 10.1056/nejmoa0912923 [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

本文附表见电子版。


Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES