Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Oct 26:2023.10.25.563779. [Version 1] doi: 10.1101/2023.10.25.563779

Sprr1 and miR-130b contribute to the senescence-like phenotype in aging

Ji Yeon Hong, Hee Jin Nam, Hong Ji, Yoon Young Kim, Miri Hyun, Hee Jung Park, Seung Min Bae, Pierre D McCrea
PMCID: PMC10634805  PMID: 37961492

Abstract

Aging is an inevitable process with senescence being one of its hallmarks. Recent advances have indicated that the elimination of senescent cells can reduce the signs of aging and increase healthy life span. Here, we identify a negative modulator of aging, Sprr1a, and in turn a negative modulator of Sprr1a, miR-130b. We show that reductions in Sprr1a levels, including via miR-130b expression, promotes cell senescence-like phenotype. We find that mediators of senescence, such as inflammatory cytokines and cell cycle regulators, are modulated by the miR-130b and Sprr1a-related pathway. For example, the levels of p16, p53 and p21 become decreased or increased upon the respective expression of Sprr1a versus miR-130b. Further, as shown in relation to p16 levels and β-galactosidase levels, cells expressing Sprr1a exhibit significant protection from senescence-inducing factors such as radiation or Doxorubicin, suggesting that Sprr1a might contribute to protection against age-related pathologies. Taken together, we introduce two modulators of properties associated with senescence-like phenotype.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES