Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2025 Feb 20:2023.10.24.563674. [Version 4] doi: 10.1101/2023.10.24.563674

Mapping Alzheimer’s Molecular Pathologies in Large-Scale Connectomics Data: A Publicly Accessible Correlative Microscopy Resource

Xiaomeng Han, Peter H Li, Shuohong Wang, Tim Blakely, Sneha Aggarwal, Bhavika Gopalani, Morgan Sanchez, Richard Schalek, Yaron Meirovitch, Zudi Lin, Daniel Berger, Yuelong Wu, Fatima Aly, Sylvie Bay, Benoît Delatour, Pierre Lafaye, Hanspeter Pfister, Donglai Wei, Viren Jain, Hidde Ploegh, Jeff Lichtman
PMCID: PMC10634883  PMID: 37961104

Abstract

Connectomics using volume-electron-microscopy enables mapping and analysis of neuronal networks, revealing insights into neural circuit function and dysfunction. In Alzheimer’s disease (AD), where amyloid-β (Aβ) and hyperphosphorylated-Tau (pTau) are implicated, connectomics offers an approach to unravel how these molecules contribute to circuit alterations by enabling the study of these molecules within the context of the complete local neuronal and glial milieu. We present a volumetric-correlated-light-and-electron microscopy (vCLEM) protocol using fluorescent nanobodies to localize Aβ and pTau within a large-scale connectomics dataset from the hippocampus of the 3xTg AD mouse model. A key outcome of this work is a publicly accessible vCLEM dataset, featuring fluorescent labeling of Aβ and pTau in the ultrastructural context with segmented neurons, glia, and synapses. This dataset provides a unique resource for exploring AD pathology in the context of connectomics and fosters collaborative opportunities in neurodegenerative disease research. As a proof-of-principle, we uncovered new localizations of Aβ and pTau, including pTau-positive spine-like protrusions at the axon initial segment and changes in the number and size of synapses near Aβ plaques. Our vCLEM approach facilitates the discovery of both molecular and structural alterations within large-scale EM data, advancing connectomics research in Alzheimer’s and other neurodegenerative diseases.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES