Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Keywords: tumour-associated macrophages, tumour microenvironment, immunotherapy, macrophage plasticity, macrophage-myofibroblast transition, macrophage-neuron transition
Introduction
Tumour microenvironment (TME) is crucial for cancer initiation, progression, and drug resistance. TME is formed by various fundamental constituents including stromal cells and immune cells (Cassetta et al., 2019; Li et al., 2023; Wang et al., 2023). Cancer development can be facilitated by tissue inflammation (Nost et al., 2021; Rajamaki et al., 2021). Despite the diverse inflammatory components in various cancer types (Cheng et al., 2021), increasing evidence demonstrated the importance of macrophages in the progression of solid cancers (Christofides et al., 2022). Macrophage is the key inflammatory effector cells, better understanding its roles may uncover effective therapeutic strategy for cancer (Coussens et al., 2013).
Interestingly, macrophages are versatile in tissues under inflammation including cancer (Maier et al., 2020; Vayrynen et al., 2021; Xue et al., 2021; Nalio Ramos et al., 2022). Their phenotypes and functions are broadly categorized into pro-inflammatory M1 and anti-inflammatory M2 (Cho et al., 2022; Zhou et al., 2022). M1 macrophages eliminate cancer cells by phagocytosis, antibody-dependent cytotoxicity, vascular damage, and tumour necrosis. M2 macrophages promote tumour growth and progression via enhancing cancer cell survival, angiogenesis and immune suppression (Zhao et al., 2020; Chen et al., 2021; Ren et al., 2022). Beyond M1/M2 polarization, new transition mechanisms for TAMs have been recently identified by single-cell bioinformatic studies including MMT (Tang et al., 2022a) and MNT (Tang et al., 2022b), their roles in cancer remain unclear.
Clinical studies highlight the crucial roles of macrophages in cancer therapy response and resistance, including chemotherapy, radiotherapy, and PDL1-based immunotherapy (Furuse et al., 2020; Liu et al., 2020). Moreover, clinical trials of macrophage-targeted therapies have been started such as the engineered mononuclear phagocytes (Brempelis et al., 2020) and chimeric antigen receptor macrophages (CAR-M) (Klichinsky et al., 2020; Wang et al., 2022), these therapeutic approaches stem from bench-top discoveries like recruitment and differentiation (Hannan et al., 2023), functional reprogramming (Willingham et al., 2012), and integration (Dang et al., 2021), highlighting the importance of basic research and preclinical study for the development of effective cancer treatment.
In this review, we systematically summarized the functional roles and underlying mechanisms of macrophages in TME for cancer formation and progression, their translational potential, and related studies on patients for overcoming the barriers of conventional cancer treatments as well as the latest immunotherapy resistance in the clinic. Finally, we also discussed the prospects and further directions of TAMs in the clinical development for cancer treatment.
Physiological roles of macrophages
Macrophages release cytokines and chemokines for recruiting immune cells for wound healing and blood vessel formation (Hernandez et al., 2022), including vascular endothelial growth factor (VEGF) (Lu et al., 2020) and transforming growth factor-beta (TGF-β) (Chung et al., 2018). Macrophages maintain tissue integrity (Mosser et al., 2021), clearing apoptotic cells (Dooling et al., 2023), debris (Kim et al., 2020), and pathogens (Nau et al., 2002) via cell-mediated phagocytosis, where the targets are recognized by pattern recognition receptors (PRRs) dependent mechanisms (Li and Wu, 2021) i.e., Toll-like receptors (TLRs) (Irizarry-Caro et al., 2020) and NOD-like receptors (NLRs) (Fekete et al., 2018; Frising et al., 2022).
Furthermore, macrophages are involved in innate and adaptive immune responses by recognizing pathogen-associated molecular patterns (PAMPs) (Greene et al., 2022) and damage-associated molecular patterns (DAMPs) (Serbulea et al., 2018; Neu et al., 2022) through PRRs. Activated macrophages produce pro-inflammatory cytokines, i.e., tumour necrosis factor-alpha (TNF-α) (Lee et al., 2021; Lechner et al., 2022; Tanito et al., 2023) and interleukin-12 (IL-12) (Luo et al., 2022; Pfirschke et al., 2022), to promote inflammation and activate other immune cells. Macrophages also process and present antigens to T cells via major histocompatibility complex (MHC) molecules aiding adaptive immune response (Mascarau et al., 2023; van Elsas et al., 2023). Interestingly, tissue-specific macrophages display unique functions. For example, alveolar macrophages in lung, express high levels of surfactant protein A (SP-A) (Bain and MacDonald, 2022; Garcia-Fojeda et al., 2022; Yau et al., 2023) and surfactant protein D (SP-D) receptors (Guo et al., 2019; Hsieh et al., 2023) for clearing inhaled particles and pathogens. Liver-resident macrophages, Kupffer cells, express various scavenger receptors (Taban et al., 2022), complement receptors (Wen et al., 2021), and Fc receptors (Pfefferle et al., 2023), filtering blood-borne pathogens (Zhao et al., 2022a), toxins (Kermanizadeh et al., 2019), and debris (Liu and Sun, 2023).
Macrophages are classified into M1 and M2 phenotypes (Guilliams and Svedberg, 2021; De Vlaminck et al., 2022). M1 macrophages express high level of pro-inflammatory cytokines like Interleukin-1β (IL-1β), Interleukin-6 (IL-6), IL-12, Interleukin-23 (IL-23), and TNF-α (Hou et al., 2018; Akhtari et al., 2021; Beyranvand Nejad et al., 2021; Gunassekaran et al., 2021) polarized by Th1 cytokines including GM-CSF, TNF-α, and interferon-gamma (IFN-γ) (Wu et al., 2022a; Zhao et al., 2022b; Cho et al., 2022; Zhang et al., 2023), whereas, M2 macrophages actively produce anti-inflammatory cytokines Interleukin-10 (IL-10) and TGF-β (Nagata et al., 2019; Yang et al., 2023a) and polarized by Th2 cytokines like Interleukin-4 (IL-4) and Interleukin-13 (IL-13) (Celik et al., 2020; Lundahl et al., 2022). For metabolism, M1 macrophages rely on glycolysis (Yu et al., 2020; Mouton et al., 2023), while M2 macrophages depend on oxidative phosphorylation (Xu et al., 2021a; Zhou et al., 2022). During tissue repair, macrophages switch from an M1-like to an M2-like phenotype (Kim et al., 2019a; Alhamdi et al., 2019; Kohno et al., 2021). Interestingly, M1/M2 homeostasis is disrupted by inhibition of aspartate-aminotransferase (Wu et al., 2020a) and N-glycosylation (Wu et al., 2020a; Hu et al., 2023), altering immune responses and tissue damage. Moreover, various polarization and activation markers coexist in tissues, and factors like the macrophage-inducible C-type lectin (MINCLE) (Maier et al., 2020; Xue et al., 2021) or TLRs (Vidyarthi et al., 2018; Zhou et al., 2022) impact their balance. TAMs play multifaceted roles in cancer progression that are both beneficial and detrimental, highlighting the dual nature of their involvement (Figure 1).
FIGURE 1.
TAMs play a complex dual role in the progression of cancer. M1 TAMs contribute to the anticancer response via multiple mechanisms. They can produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) to cause oxidative damage and kill cancer cells. The secretion of pro-inflammatory cytokines and chemokines (e.g., TNF-α, IL1B, IL12A/B, CCL5, and CXCL10) can mobilize other anticancer immune cells, like T cells and NK cells, into the TME. Anti-angiogenesis is promoted by secretion of thrombospondin-1 and angiostatic chemokines like CXCL9, CXCL10, and CXCL11. TAMs also express MHC class I and II molecules for antigen presentation to further priming and activation of T cells. The interaction between CD80/CD86 on TAMs and CD28 on T cells provides a second signal for T cell activation. M2 TAMs promote immunosuppression, angiogenesis, and tumour growth/metastasis while contributing to drug resistance. Immunosuppression involves secretion of TGF-β and IL-10, expression of PD-L1, and CCL22-induced Treg activation. In angiogenesis, TAMs secrete factors like VEGF, FGFs, PDGF, HGF, MMPs, and IL-8/1. During tumour growth and metastasis, M2 TAMs enhance proliferation, migration, and invasion. Factors like EGF, PDGF, VEGF, CCL-10, and MMPs play key roles. TAM can also undergo transformation to MNT and MMT, resulting in the generation of cancer pain and cancer-associated fibroblast. In drug resistance, TAM-derived TGF-β, IL-6/8, and PDGF stimulate survival pathways and enhance DNA repair in cancer cells. It is noteworthy that macrophages can switch from M1 phenotype to M2 phenotype during tissue repair.
Anticancer effects of TAMs
Reactive species production
M1 TAMs produce reactive oxygen species (ROS), mediated by NADPH oxidase (Fang et al., 2022; Tlili et al., 2023), causing cancer cell death. Activation by IFN-γ and TNF-α prompts TAMs to generate reactive nitrogen species (RNS) via nitric oxide synthase (iNOS) (Zhang et al., 2021a; Wei et al., 2022). Collectively, these ROS and RNS induce oxidative damage on cancer cells, leading to direct cancer cell-killing effect (Liang et al., 2019; Huang et al., 2022; Qi et al., 2022; Kidwell et al., 2023).
Pro-inflammatory cytokine and chemokine
TAMs secrete pro-inflammatory cytokines for mobilizing anticancer cells (e.g., T cells and natural killer cells) into TME, including TNF-α (Jiang et al., 2019; Kaplanov et al., 2019; Tu et al., 2021a), IL1B (interleukin-1 beta) (Revu et al., 2018), IL12A and IL12B (subunits of IL-12) (Yen et al., 2022). TAMs also produce chemokines, e.g., C-C Motif Chemokine Ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10) to recruit and activate other immune cells to TME, driven by pro-inflammatory transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) (Taki et al., 2018). Furthermore, M1 macrophages produce IL-12, prompting CD4+ T cells towards Th1 phenotype (Zhao et al., 2022b), these Th1 cells will produce IFN-γ to activate cytotoxic CD8+ T cells in TME (Greaney et al., 2020; Liu et al., 2022). M1 macrophages also stimulate NK cell activation by IL-12, IL-15 and IL-18 (Mattiola et al., 2015).
Anti-angiogenesis
M1 macrophages secrete angiostatic factor thrombospondin-1(TSP1) (Yang et al., 2019; Kumar et al., 2020) for inhibiting angiogenesis by interacting with an endothelial cell receptor CD36 in various cancers, including hepatocellular carcinoma (Aburima et al., 2021). Moreover, M1 macrophages produce additional angiostatic chemokines to block vessel formation via CXCR3 (C-X-C Motif Chemokine Receptor 3) dependent mechanism, including CXCL9, 10, 11 (C-X-C Motif Chemokine Ligand 9, 10, 11) (Romagnani et al., 2004; Sahraei et al., 2019).
Antigen presentation
M1 macrophages express MHC class I and II molecules (Haloul et al., 2019; Ahmed and Ismail, 2020) to present cancer antigens, involving several genes, including MHC class I (Yao et al., 2020; Desterke et al., 2021; Piatakova et al., 2021) and II (He et al., 2021; Tang et al., 2022c; Scavuzzi et al., 2022). The interaction of MHC molecules with T cell receptors amplifies anti-tumour host immune response (Guerriero, 2019; Kawasaki et al., 2022). Interaction between CD80 and CD86 on the M1 macrophage and CD28 on the T cell also provides crucial second signal for T cell activation (Trzupek et al., 2020).
Pro-tumour effects of TAM
Immunosuppression
TAMs contribute to immunosuppression in TME, including lung adenocarcinoma (LUAD) and bladder cancer (BLCA). They inhibit the anticancer activities of NK cells primarily through producing TGF-β (Nunez et al., 2018) and IL-10 (Xu et al., 2022). TGF-β hampers NK cell cytotoxicity by downregulating NKG2D receptor expression (Lazarova and Steinle, 2019). IL-10 inhibits the production of the anticancer cytokine IFN-γ in NK cells (Wang et al., 2021a). TAMs in these diverse cancer types express programmed death-ligand 1 (PD-L1) (Sumitomo et al., 2019; Shinchi et al., 2022; Xia et al., 2022; Elomaa et al., 2023), which interacts with the PD-1 receptor on T cells (Pereira et al., 2023; Puig-Saus et al., 2023) and NK cells (Zhou et al., 2023a; van der Sluis et al., 2023), leading to their exhaustion and promoting tumour immune evasion. TAM-derived CCL22 (C-C Motif Chemokine Ligand 22) contributes to the recruitment and activation of regulatory T cells (Tregs) (Rapp et al., 2019; Chen et al., 2022a), inducing immunosuppression in TME (Kraaij et al., 2010; Erlandsson et al., 2019). TAMs also enhance immunosuppressive function of Tregs, promote the transition of conventional CD4+ T cells into Tregs (Morhardt et al., 2019; Saraiva et al., 2020; Maldonado et al., 2022), and activate myeloid-derived suppressor cells (MDSCs) via IL-10 (Yu et al., 2018; Yogev et al., 2022) and TGF-β (Becker et al., 2018; Astarita et al., 2023). Furthermore, TAMs express immune checkpoint molecule cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (Guan et al., 2021), interacting with CD80/CD86 of Tregs to amplify their immunosuppressive effects (Zappasodi et al., 2021; Kennedy et al., 2022).
Angiogenesis
TAMs play pivotal role in augmenting angiogenesis within the TME, integral to cancer progression (Cheng et al., 2021). Essential for tumor growth and metastasis (Liu et al., 2023a; Natale and Bocci, 2023), angiogenesis provides TME with necessary nutrients and oxygen, aiding in the growth of cancer cells (Schaaf et al., 2018; Lugano et al., 2020; Schito and Rey, 2020). TAMs secret factors for promoting angiogenesis, including VEGF (Schaaf et al., 2018), fibroblast growth factors (FGF1 and FGF2) (Schaaf et al., 2018; Im et al., 2020), platelet-derived growth factor (PDGF) (Ntokou et al., 2021), hepatocyte growth factor (HGF) (Choi et al., 2019; Dong et al., 2019), matrix metalloproteinases (MMP-9, MMP-2) (Diwanji and Bergmann, 2020; Tian et al., 2022), and cytokines like IL-8 and IL-1 (Liu et al., 2023b; Yang et al., 2023b). VEGF is crucial for tumoural angiogenesis (Lai et al., 2019; Hwang et al., 2020). Moreover, TAMs are concentrated in the hypoxic zones of tumours (Bai et al., 2022), where they upregulate the expression of numerous angiogenic genes including Hypoxia-inducible factors (HIF)-1 and −2 (Jeong et al., 2019; Cowman et al., 2020) for enhancing the production of angiogenic factors like VEGF in TME (Roda et al., 2012).
Cancer growth and metastasis
M2 TAMs promote primary tumour development and metastasis (Yao et al., 2018; Li et al., 2019a; Tu et al., 2021b). They increase tumour proliferation in breast cancer (Chen et al., 2022b; Zhou et al., 2023b), endometrial cancer (Xiao et al., 2020; Gu et al., 2021), and renal cell carcinoma (Xie et al., 2021; Ishii et al., 2022). Furthermore, M2 TAMs secrete Epidermal Growth Factor (EGF) (Zeng et al., 2019; Wu et al., 2020b), which binds to EGFR on cancer cells, for activating their growth signaling including MAPK/ERK (Liang et al., 2022) and PI3K/Akt pathways (Zhang et al., 2021b), promoting cell motility and invasion (Haque et al., 2019; Zeng et al., 2019; Onal et al., 2021). Growth Factor PDGF (Turrell et al., 2023) secreted from TAMs also contributes to tumour cell proliferation. Tumour metastasis is defining characteristic of advanced cancer stage, TAM-derived EGF accelerates metastasis by activating the EGFR-ERK signaling and inhibiting the expression of lncRNA LIMT (Zeng et al., 2019) in the epithelial ovarian cancer.
At the pre-metastasis stage, TAMs secrete VEGF, CCL-10 and MMPs, which remodel distant tissues to create pre-metastatic niche (Kim et al., 2019b; Winkler et al., 2020). TAMs release inflammatory factors TNF-α, IL-6, and IL-11 (Kaplanov et al., 2019; Yu et al., 2019; Beyranvand Nejad et al., 2021) to enhance cancer cell survival and proliferation by activating NF-κB and STAT3 pathways (Dorrington and Fraser, 2019; Balic et al., 2020). TGF-β from TAMs activates TGF receptors on cancer cells, initiating SMAD signaling for their growth (Chung et al., 2023; Lv et al., 2023). Importantly, TAM-derived TGF-β induces epithelial-to-mesenchymal transition (EMT) of cancer cells (Cai et al., 2019; Tiwari et al., 2021), allowing them to migrate into surrounding tissue and vasculature (Dongre and Weinberg, 2019; Wang et al., 2021b). Additionally, TAMs-secreted MMPs, such as MMP2 and MMP9 (Wang and Khalil, 2018; Liu et al., 2019; Muniz-Bongers et al., 2021), degrade the ECM in TME (Marigo et al., 2020), enabling metastasis into the bloodstream or lymphatic system (Winkler et al., 2020). TAMs produce chemokines like CCL18 and CCL22 (She et al., 2018; Kimura et al., 2019; Zhou et al., 2019; Chen et al., 2022a) to promote tumour cell migration. TAMs also release proteases like cathepsins (CTSB, CTSD) (Loeuillard et al., 2020; Shi et al., 2022) to stimulate tumour cells to produce tissue inhibitors of metalloproteinases, enhancing ECM degradation and metastasis (Bissinger et al., 2021).
TAMs transformation also contributes to cancer progression. Besides M1/M2 polarization, single-cell RNA-sequencing revealed new TAM phenomena. Macrophage to MNT, a process where TAMs transform into neuron-like cells contributing to the formation of cancer pain (Tang et al., 2022b). MMT, where TAMs trans-differentiate into myofibroblasts for increasing abundance of pro-tumour cancer-associated fibroblasts (CAFs) in TME, enhancing the progression of non-small-cell lung carcinoma (NSCLC) (Tang et al., 2022a).
Drug resistance
TAMs are associated with resistance of cancer therapy (Mantovani et al., 2022). TAM-derived TGF-β upregulates the expression of multidrug resistance protein 1 (MDR1) in cancer cells (Badmann et al., 2020), leading to drug resistance. TAMs secrete IL-6 and IL-8 (Ahmed et al., 2021; Radharani et al., 2022), associated with resistance to therapies including EGFR tyrosine kinase inhibitors. TAMs-secreted PDGF enhances DNA repair in cancer cells against radiation therapy (Sakama et al., 2021).
Interplay between TME and cancer stem cells
The dynamic relationship between the TME and cancer stem cells (CSCs) is central to understanding the roles of TAMs. CSCs, distinguished by their pronounced expression of stemness markers like SOX2, NANOG, and OCT4 (Zhou et al., 2021), actively drive self-renewal, differentiation, and are influenced by signals from TME (Yang et al., 2020). Key pathways such as TGF-β, Wnt, and Hedgehog (Li et al., 2019b; Zhu et al., 2019; Wu et al., 2022b) mold the genetic landscape of CSCs. The crosstalk between CSCs and TME involves factors including IL-6 (Orange et al., 2023), IL-8 (Sun et al., 2018), IL-1β (Eyre et al., 2019), MMPs (Jin and Jin, 2020), VEGF (Lopez de Andres et al., 2020), and TGF-β1 (Yuan et al., 2022), which are encapsulated within extracellular vehicles (EVs) (Su et al., 2021; Cao et al., 2022). Given the immunomodulatory role of CSCs, further studies are essential to understand the clinical implications.
Importantly, interaction between TAMs and CSCs fosters an immunosuppressive TME (Wu et al., 2023). CSCs promote macrophage recruitment and polarization by ILs, ECM, TGF-β, and periostin (Ning et al., 2018; Kesh et al., 2020; Taniguchi et al., 2020; Li et al., 2022a; Lin et al., 2022). Moreover, TAMs increase CD47 expression in pancreatic, liver and lung cancer stem cells (Cioffi et al., 2015; Liu et al., 2017; Ruiz-Blazquez et al., 2021). When linked to SIRPα on macrophages, CD47 expression protects CSCs against immune cell-mediated phagocytosis (Li et al., 2018). TAM-secreted factors also upregulate immunological checkpoints like PD-L1 (Muraoka et al., 2019; Pu and Ji, 2022). The intricate interplay between CSCs and TAMs creates immunosuppressive TME, enhancing the survival of CSC and hindering tumour eradication post-immunotherapy.
Macrophage-targeted antitumour therapy
TAMs are essential for cancer immunotherapy (Lin et al., 2019). Macrophage-targeted treatments often deplete macrophages, modify their phenotypes, or enhance antigen presentation activity of TAM (Cassetta and Pollard, 2018). Combined with chemotherapy, radiation, or immunotherapy, these techniques may increase host antitumor immunity. They have been studied in animal models and clinical studies with immunological checkpoints and other immunotherapies (Table 1).
TABLE 1.
Selected clinical trials of drugs targeting TAMs.
Compound | Clinical phase | Tumour type | Status | NCT identifier | Year |
---|---|---|---|---|---|
CSF1R inhibitors | |||||
PLX3397 | Phase1 | Drug Interaction Potential | Completed | NCT03291288 | 2017 |
Phase3 | Tenosynovial Giant Cell Tumour | Active_Not_Recruiting | NCT04488822 | 2020 | |
Phase4 | Tenosynovial Giant Cell Tumour | Active_Not_Recruiting | NCT04526704 | 2020 | |
Phase2 | Tenosynovial Giant Cell Tumour | Recruiting | NCT04703322 | 2021 | |
HMPL-012 | Phase2 | Advanced Solid Tumours | Completed | NCT04169672 | 2019 |
Phase2 | Thyroid Cancer | Unknown | NCT04524884 | 2020 | |
Phase2 | Neuroendocrine Tumours | Active_Not_Recruiting | NCT04579679 | 2020 | |
Phase2 | Advanced Colorectal Cancer | Not_Yet_Recruiting | NCT04734249 | 2021 | |
Phase2 | Advanced Colorectal Cancer | Recruiting | NCT04764006 | 2021 | |
Phase2 | Advanced Non-Small Cell Lung Cancer | Recruiting | NCT04922658 | 2021 | |
Phase1 and 2 | Advanced Colorectal Cancer | Recruiting | NCT04929652 | 2021 | |
Phase1 | Small Cell Lung Carcinoma | Recruiting | NCT04996771 | 2021 | |
Phase2 | Carcinoma, Non-Small-Cell Lung | Recruiting | NCT05003037 | 2021 | |
Phase2 | Refractory Metastatic Digestive System Carcinoma and Peritoneal Cancer | Recruiting | NCT05030246 | 2021 | |
Na | Biliary Tract Cancer | Recruiting | NCT05056116 | 2021 | |
Phase1 | Neuroendocrine Tumours and Non-hematologic Malignancy | Recruiting | NCT05077384 | 2021 | |
Phase1 and 2 | Solid Tumour | Active_Not_Recruiting | NCT05093322 | 2021 | |
Phase2 | Neuroendocrine Neoplasm | Recruiting | NCT05165407 | 2021 | |
Phase2 | Hepatocellular Carcinoma | Recruiting | NCT05171439 | 2021 | |
Phase2 | Breast Cancer and Breast Cancer Female | Recruiting | NCT05186545 | 2022 | |
Phase1 and 2 | Pancreatic Cancer | Recruiting | NCT05218889 | 2022 | |
Phase2 | Gastric Adenocarcinoma | Not_Yet_Recruiting | NCT05235906 | 2022 | |
Phase2 | Pancreatic Neoplasms | Not_Yet_Recruiting | NCT05481463 | 2022 | |
Phase2 | Pancreatic Neoplasms | Not_Yet_Recruiting | NCT05481476 | 2022 | |
Phase2 | Advanced Solid Tumours | Not_Yet_Recruiting | NCT05527821 | 2022 | |
Phase2 | Small Cell Lung Cancer | Not_Yet_Recruiting | NCT05595889 | 2022 | |
Phase2 | Pancreatic Carcinoma | Recruiting | NCT05627427 | 2022 | |
Phase2 | Extensive-stage Small-cell Lung Cancer | Not_Yet_Recruiting | NCT05668767 | 2022 | |
Phase1 and 2 | Metastatic Triple-negative Breast Cancer | Not_Yet_Recruiting | NCT05746728 | 2023 | |
Phase1 and 2 | Unresectable Locally Advanced | Not_Yet_Recruiting | NCT05832892 | 2023 | |
Phase1 and 2 | Small Cell Lung Cancer | Not_Yet_Recruiting | NCT05882630 | 2023 | |
Phase2 | Pancreatic Cancer | Recruiting | NCT05908747 | 2023 | |
DCC-3014 | Phase1 | Advanced Sarcoma cancer | Active_Not_Recruiting | NCT04242238 | 2020 |
Phase3 | Giant Cell Tumour | Active_Not_Recruiting | NCT05059262 | 2021 | |
Phase1 and 2 | Advanced Malignant Neoplasm | Recruiting | NCT03069469 | 2017 | |
CS2164 | Phase1 | Small Cell Lung Cancer | Recruiting | NCT03216343 | 2017 |
Phase1 and 2 | Ovarian Cancer | Completed | NCT03166891 | 2017 | |
Phase2 | Ovarian Cancer | Completed | NCT03901118 | 2019 | |
Phase3 | Small Cell Lung Cancer | Recruiting | NCT04830813 | 2021 | |
Phase3 | Ovarian Cancer and Relapsed or Refractory and Chiauranib and Paclitaxel | Recruiting | NCT04921527 | 2021 | |
Phase1 and 2 | Small-cell Lung Cancer and Advanced Solid Malignant Tumour | Recruiting | NCT05271292 | 2022 | |
Q702 | Phase1 | Solid Tumour and Advanced Cancer and Metastatic Cancer | Recruiting | NCT04648254 | 2020 |
Phase1 and 2 | Esophageal Cancer, Gastric Cancer, Hepatocellular Cancer and Cervical Cancer | Recruiting | NCT05438420 | 2022 | |
TPX-0022 | Phase1 and 2 | Advanced Solid Tumour | Active_Not_Recruiting | NCT03993873 | 2019 |
X-82 | Phase1 | Solid Tumour | Terminated | NCT03511222 | 2018 |
Phase1 and 2 | Thymic Carcinoma, Non-small Cell Lung Cancer and Small-Cell Lung Cancer | Active_Not_Recruiting | NCT03583086 | 2018 | |
Phase1 | Advanced Malignant Solid Tumours | Active_Not_Recruiting | NCT03792958 | 2019 | |
Phase2 | Extensive-stage Small Cell Lung Cancer | Active_Not_Recruiting | NCT04373369 | 2020 | |
Chemokine inhibitors | |||||
BMS-813160 | Phase1 and 2 | Colorectal Cancer and Pancreatic Cancer | Active_Not_Recruiting | NCT03184870 | 2017 |
Phase1 and 2 | Pancreatic Ductal Adenocarcinoma | Active_Not_Recruiting | NCT03496662 | 2018 | |
Phase1 and 2 | Locally Advanced Pancreatic Ductal Adenocarcinoma | Recruiting | NCT03767582 | 2018 | |
Phase2 | Non-small Cell Lung Cancer and Hepatocellular Carcinoma | Recruiting | NCT04123379 | 2019 | |
Maraviroc | Phase1 | Metastatic Colorectal Cancer and MSS | Completed | NCT03274804 | 2017 |
Phase1 | Colorectal Cancer Metastatic and Pancreatic Cancer Metastatic | Unknown | NCT04721301 | 2021 | |
Phase1 and 2 | HIV and Hematologic Malignancies | Recruiting | NCT05470491 | 2022 | |
Anti-CD47/SIRPα antibodies | |||||
Hu5F9-G4 | Phase1 | Hematological Malignancies | Active_Not_Recruiting | NCT03248479 | 2017 |
Phase1 | Ovarian Cancer | Completed | NCT03558139 | 2018 | |
Phase1 | Acute Myeloid Leukemia | Terminated | NCT03922477 | 2019 | |
Phase1 and 2 | Mycosis Fungoides and | Recruiting | NCT04541017 | 2020 | |
Phase1 | Follicular Lymphoma | Recruiting | NCT04599634 | 2020 | |
Phase1 | High Risk Neuroblastoma, Recurrent Neuroblastoma and Resectable Osteosarcoma | Suspended | NCT04751383 | 2021 | |
Phase2 | Myeloid Malignancies | Active_Not_Recruiting | NCT04778410 | 2021 | |
Phase2 | Solid Tumour | Recruiting | NCT04827576 | 2021 | |
Phase2 | Triple-Negative Breast Cancer | Recruiting | NCT04958785 | 2021 | |
Phase1 | Brain Cancer | Recruiting | NCT05169944 | 2021 | |
Phase2 | Metastatic Colorectal Cancer | Recruiting | NCT05330429 | 2022 | |
Phase1 | Advanced Malignant Solid Neoplasm | Not_Yet_Recruiting | NCT05807126 | 2023 | |
BI 754091 | Phase1 | Neoplasms and Carcinoma, Non-Small-Cell Lung | Completed | NCT03156114 | 2017 |
Phase1 | Neoplasms and Neoplasm Metastasis and Carcinoma, Non-Small-Cell Lung | Terminated | NCT03166631 | 2017 | |
Early_Phase1 | Neoplasms | Active_Not_Recruiting | NCT03433898 | 2018 | |
Phase1 | Non-squamous, Non-Small-Cell Lung Cancer and Neoplasms | Active_Not_Recruiting | NCT03468426 | 2018 | |
Phase2 | Neoplasm Metastasis | Active_Not_Recruiting | NCT03697304 | 2018 | |
Phase1 | Carcinoma, Non-Small-Cell Lung and Head and Neck Neoplasms | Terminated | NCT03780725 | 2018 | |
Phase1 | Neoplasms | Recruiting | NCT03964233 | 2019 | |
Phase1 | Neoplasms | Completed | NCT03972150 | 2019 | |
Phase1 | Solid Tumour, Adult | Recruiting | NCT03990233 | 2019 | |
Phase1 and 2 | Colorectal Cancer | Recruiting | NCT04046445 | 2019 | |
Phase1 | Neoplasm | Completed | NCT04138823 | 2019 | |
Phase1 | Neoplasms | Active_Not_Recruiting | NCT04147234 | 2019 | |
Phase2 | Anal Canal Squamous Cell Carcinoma | Withdrawn | NCT04499352 | 2020 | |
Phase1 | Solid Tumours | Completed | NCT04653142 | 2020 | |
Phase2 | Squamous Cell Carcinoma | Recruiting | NCT04719988 | 2021 | |
Phase1 | Colorectal Neoplasms, Carcinoma and Non-Small-Cell Lung | Recruiting | NCT04752215 | 2021 | |
Phase1 | Neoplasms | Recruiting | NCT04958239 | 2021 | |
Phase1 | Head and Neck Squamous Cell Carcinoma | Recruiting | NCT05249426 | 2022 | |
Phase1 | Solid Tumours | Recruiting | NCT05471856 | 2022 | |
ALX148 | Phase1 | Metastatic Cancer and Solid Tumour and Advanced Cancer and NonHodgkin Lymphoma | Active | NCT03013218 | 2017 |
Phase2 and 3 | Gastric Cancer | Recruiting | NCT05002127 | 2021 | |
Phase1 and 2 | HER2-expressing Cancers | Recruiting | NCT05027139 | 2021 | |
Phase2 | Microsatellite Stable Metastatic Colorectal Cancer | Recruiting | NCT05167409 | 2021 | |
Phase2 | Ovarian Cancer | Recruiting | NCT05467670 | 2022 | |
Phase2 | Oropharynx Cancer | Not_Yet_Recruiting | NCT05787639 | 2023 | |
Phase1 | HER2-positive Breast Cancer and Metastatic Cancer | Recruiting | NCT05868226 | 2023 | |
AO-176 | Phase1 and 2 | Solid Tumour | Active_Not_Recruiting | NCT03834948 | 2019 |
IBI188 | Phase1 | Advanced Malignancies | Completed | NCT03763149 | 2018 |
SRF231 | Phase1 | Advanced Solid Cancers and Hematologic Cancers | Completed | NCT03512340 | 2018 |
Agonist anti-CD40 antibodies | |||||
SEA-CD40 | Phase2 | Melanoma and Carcinoma, Non-Small- Cell Lung | Active_Not_Recruiting | NCT04993677 | 2021 |
APX005M | Phase1 and 2 | Solid Cancers | Completed | NCT03123783 | 2017 |
Phase2 | Esophageal Cancer, Gastric Cancer and Hepatocellular Cancer | Active_Not_Recruiting | NCT03165994 | 2017 | |
Phase1 | Glioblastoma Multiforme, Nos and Ependymoma, NOS and Medulloblastoma | Active_Not_Recruiting | NCT03389802 | 2018 | |
Phase1 | Advanced Melanoma, Non-small Cell Lung Cancer and Renal Cell Carcinoma | Active_Not_Recruiting | NCT03502330 | 2018 | |
Phase1 | Metastatic Melanoma | Terminated | NCT03597282 | 2018 | |
Phase2 | Soft Tissue Sarcoma | Recruiting | NCT03719430 | 2018 | |
Phase2 | Locally Advanced Rectal Adenocarcinoma | Active_Not_Recruiting | NCT04130854 | 2019 | |
Phase2 | Ovarian Cancer | Not_Yet_Recruiting | NCT05201001 | 2022 | |
Phase1 and 2 | Pancreatic Cancer | Recruiting | NCT05419479 | 2022 | |
CDX-1140 | Phase1 | Solid Tumours | Completed | NCT03329950 | 2017 |
Phase1 and 2 | Non-Small Cell Lung Cancer | Recruiting | NCT04491084 | 2020 | |
Phase1 | Malignant Epithelial Neoplasms | Recruiting | NCT04520711 | 2020 | |
Phase2 | Pancreatic Cancer | Recruiting | NCT04536077 | 2020 | |
Phase1 | Breast Cancer and Melanoma | Recruiting | NCT04616248 | 2020 | |
Phase1 | Metastatic Triple Negative Breast Cancer | Recruiting | NCT05029999 | 2021 | |
Phase2 | Solid Tumours | Not_Yet_Recruiting | NCT05231122 | 2022 | |
Phase1 | Malignant Epithelial Neoplasms | Enrolling_By_Invitation | NCT05349890 | 2022 | |
NG-350A | Phase1 | Metastatic Cancer and Epithelial Tumour | Completed | NCT03852511 | 2019 |
Phase1 | Epithelial Tumour and Metastatic Cancer | Recruiting | NCT05165433 | 2021 | |
TLR agonists | |||||
Imiquimod | Phase1 | Carcinoma, Non-Small-Cell Lung Cancer | Unknown | NCT03057340 | 2017 |
Early_Phase1 | Cervical Intraepithelial Neoplasia | Active_Not_Recruiting | NCT03196180 | 2017 | |
NA | Cervical Intraepithelial Neoplasia 3 | Unknown | NCT03206138 | 2017 | |
Phase2 | High Grade Intraepithelial Neoplasiaand Cervix Cancer | Completed | NCT03233412 | 2017 | |
Phase2 | Basal Cell Carcinoma, Basal Cell Carcinoma of Skin and Invasive Carcinoma | Recruiting | NCT03534947 | 2018 | |
Phase1 and 2 | Primary/Relapsed Acute Lymphoblastic Leukemia (ALL) of Childhood, Adolescents and Young Adults | Unknown | NCT03559413 | 2018 | |
Phase1 | Solid Tumours | Recruiting | NCT03872947 | 2019 | |
Phase1 | Malignant Glioma | Recruiting | NCT03893903 | 2019 | |
Phase1 | Metastatic Breast Cancer | Terminated | NCT03982004 | 2019 | |
Phase1 | Melanoma | Unknown | NCT04072900 | 2019 | |
Early_Phase1 | Basal Cell Carcinoma | Completed | NCT04279535 | 2020 | |
Phase1 | Glioblastoma | Active_Not_Recruiting | NCT04642937 | 2020 | |
Early_Phase1 | Oral Cancer | Recruiting | NCT04883645 | 2021 | |
Phase1 | Bladder Cancer and Bladder | Recruiting | NCT05055050 | 2021 | |
Phase3 | Basal Cell Carcinoma | Not_Yet_Recruiting | NCT05212246 | 2022 | |
Phase1 | Bladder Cance | Recruiting | NCT05375903 | 2022 | |
Resiquimod | Phase1 | Tumours | Completed | NCT00821652 | 2009 |
Phase1 and 2 | Advanced Malignancies | Completed | NCT00948961 | 2009 | |
Phase2 | Melanoma | Completed | NCT00960752 | 2009 | |
Phase2 | Bladder Cancer | Terminated | NCT01094496 | 2010 | |
Phase2 | Glioma and Glioblastoma | Active_Not_Recruiting | NCT01204684 | 2010 | |
Early_Phase1 | Recurrent Melanoma | Completed | NCT01748747 | 2012 | |
Phase1 and 2 | Melanoma | Unknown | NCT02126579 | 2014 | |
Phase4 | Postoperative Pain | Completed | NCT03570541 | 2018 | |
Phase1 and 2 | Advanced Solid Tumour | Recruiting | NCT04799054 | 2021 | |
Phase1 and 2 | Non-muscle-invasive Bladder Cancer | Recruiting | NCT05710848 | 2023 | |
CpG ODN | Phase2 | Lymphoma, Mantle-Cell | Completed | NCT00490529 | 2007 |
Early_Phase1 | Breast Cancer | Completed | NCT00640861 | 2008 | |
Phase2 | Breast Cancer | Terminated | NCT00824733 | 2009 | |
Phase1 | Melanoma | Completed | NCT01149343 | 2010 | |
Phase2 | Malignant Melanoma | Recruiting | NCT04126876 | 2019 | |
Phase1 | Pancreatic Cancer and Metastatic Pancreatic Cancer | Recruiting | NCT04612530 | 2020 | |
Phase1 | Lung Cancer and Hepatocellular Carcinoma and Solid Tumour | Recruiting | NCT04952272 | 2021 | |
Poly(I:C) | Phase1 | Prostate Cancer | Completed | NCT03412786 | 2018 |
Phase1 | Leiomyosarcoma | Active_Not_Recruiting | NCT04420975 | 2020 | |
Early_Phase1 | Advanced Hepatocellular Carcinoma | Terminated | NCT04777708 | 2021 | |
CMP-001 | Phase1 and 2 | Advanced Cancer | Terminated | NCT02554812 | 2015 |
Phase1 | Non-Small Cell Lung Cancer | Completed | NCT03438318 | 2018 | |
Phase1 | Colorectal Neoplasms Malignant and Liver Metastases | Completed | NCT03507699 | 2018 | |
Phase2 | Melanoma and Lymph Node Cancer | Active_Not_Recruiting | NCT03618641 | 2018 | |
Phase1 and 2 | Lymphoma | Recruiting | NCT03983668 | 2019 | |
Phase1 and 2 | Locally Advanced Malignant Solid Neoplasm | Terminated | NCT04387071 | 2020 | |
Phase2 | Melanoma | Recruiting | NCT04401995 | 2020 | |
Phase2 | Squamous Cell Carcinoma of Head and Neck | Active_Not_Recruiting | NCT04633278 | 2020 | |
Phase2 | Triple Negative Breast Cancer | Recruiting | NCT04807192 | 2021 | |
Phase2 | Merkel Cell Carcinoma, Triple Negative Breast Cancer and Non-Small Cell Lung Cancer | Recruiting | NCT04916002 | 2021 | |
Phase3 | Solid Tumours | Recruiting | NCT05059522 | 2021 | |
Phase2 | Multiple Primary Cancers | Not_Yet_Recruiting | NCT05164510 | 2021 | |
Phase2 | Metastatic Prostate Adenocarcinoma | Not_Yet_Recruiting | NCT05445609 | 2022 | |
TREM2 inhibitor | |||||
PY314 | Phase1 | Advanced Solid Tumour | Recruiting | NCT04691375 | 2020 |
Clever 1 inhibitor | |||||
FP-1305 | Phase1 and 2 | Cancer | Recruiting | NCT03733990 | 2018 |
Phase1 | Non-small Cell Lung Cancer | Not_Yet_Recruiting | NCT05171062 | 2021 | |
Phase1 and 2 | Acute Myeloid Leukemia | Recruiting | NCT05428969 | 2022 | |
Complement inhibitor | |||||
IPH5401 | Phase1 | Advanced Solid Tumours | Terminated | NCT03665129 | 2018 |
Macrophage cell therapy | |||||
CT-0508 | Phase1 | Solid Tumours | NCT04660929 | 2020 | |
TEMFERON | Phase1 and 2 | Glioblastoma Multiforme | Recruiting | NCT03866109 | 2019 |
Phase1 and 2 | Multiple Myeloma | Terminated | NCT03875495 | 2019 |
Depletion of macrophages
TAM recruitment by CCL2 and CCR2 is critical to tumour invasion and metastasis (Xu et al., 2021b). CCL2-CCR2 signaling controls the supply of circulating inflammatory monocytes (Argyle and Kitamura, 2018) and inhibiting CCR2 keeps monocytes in bone marrow, reducing TAMs at cancer sites (Flores-Toro et al., 2020). Blocking CCL2-CCR2 axis also hinders TAM recruitment, decreasing tumour incidence and enhancing CD8+ T cells anti-tumour activity (Teng et al., 2017; Tu et al., 2020). Another target is CSF-1, which promotes monocyte and macrophage differentiation, proliferation, and function (Stanley and Chitu, 2014). Mouse models with CSF-1R inhibition had smaller tumors and better survival (Tan et al., 2021). Small molecule inhibitors of CSF1-R have also been shown to deplete some TAMs, enhancing tumour sensitivity to chemotherapy (O'Brien et al., 2021).
Alteration of macrophage phenotypes
TAMs change into a tumour-suppressing phenotype (Liu et al., 2021) which is a promising clinical strategy for cancer treatment. Inducing M1 macrophage phenotype through the use of selective class IIa HDAC inhibitors (Li et al., 2021a) enhances T cell responses to chemotherapy and immune checkpoint blockades (McCaw et al., 2019). The CD47/SIRP-α pathway is crucial for tumour immune escape, and blocking it enhances macrophages immune killing against tumours (Wang et al., 2020; Jia et al., 2021). Cancer immunotherapy research has also focused on anti-PD-1/PD-L1 treatment (Tomlins et al., 2023). TAMs, particularly M2 TAMs, express PD-L1 on their surface and contribute to immunosuppression by promoting T-cell apoptosis (Li et al., 2022b; Shinchi et al., 2022). In vitro-transcribed mRNA could stimulate effector molecule synthesis or cell reprogramming. mRNA in an injectable nanocarrier genetically reprogrammed TAMs into antitumour effectors. Nanoparticles formulated with mRNAs encoding the transcription factor interferon regulatory factor 5 (IRF5) and its activating kinase, inhibitor of NF-B kinase subunit-β (IKKβ), reversed the immunosuppressive TME and reprogrammed TAMs, regressing tumours in mouse cancer models (Zhang et al., 2019; Petty et al., 2021). The LILRB family, specifically LILRB2, is integral to the immune evasion strategies of cancer cells (Chen et al., 2018). LILRB2, an MHC-binding protein rich in TAMs, interacts with MHC class I molecules, which cancer cells often downregulate to dodge T cell recognition (Liu et al., 2023c). Blocking LILRB2 enhances macrophage pro-inflammatory and phagocytic activity. Its effect on macrophage activation and phagocytosis is unknown (Chen et al., 2018). MK-4830, an antibody against LILRB2, showed promising results in early trials with advanced-stage tumours (Siu et al., 2022). Responses correlated with the expression of pro-inflammatory cytokines and enhanced cytotoxic T cell-mediated anti-tumour immune response (Sharma et al., 2021). These approaches have been tested with other clinical used immunotherapies like immune checkpoints for their clinical potential with animal models and clinical trials.
Antigen presentation enhancement
Scavenger receptors on TAMs are becoming therapeutic targets for their role in promoting TME pro-inflammatory shifts. Scavenger receptor CD163 is associated to tumour progression in several malignancies but the mechanism is unclear (Xie et al., 2022). However, CD163+ macrophage depletion causes tumor regression and re-establish anti-PD1 treatment response (Etzerodt et al., 2019). Macrophage mannose receptor 1 (MRC1), also known as CD206, affects tumour immunity (Rahabi et al., 2020). Its activation induces immunosuppressive macrophages. Intriguingly, MRC1-binding peptide RP-182 converts TAMs into anti-tumour M1-like effector cells (Jaynes et al., 2020). The collagenous macrophage receptor (MARCO) is abundantly present on TAMs. Targeting MARCO potentially reprogrammes TAMs from tumour-supportive to pro-inflammatory effectors (Sa et al., 2020; La Fleur et al., 2021). Another scavenger receptor Clever 1 also suppresses macrophages and T helper 1 lymphocytes (Virtakoivu et al., 2021). Blocking it switches TAMs from immunosuppressive to pro-inflammatory (Viitala et al., 2019). Triggering receptor expressed on myeloid cells 2 (TREM2), upregulated on TAMs in human and mouse tumours, is a potential target (Katzenelenbogen et al., 2020; Molgora et al., 2020). Blocking TREM2+ macrophages limit tumour growth and augment anti-PD1 therapy (Binnewies et al., 2021). PSGL1, highly expressed in TAMs, represents a valuable target for TAMs re-education (Johnston et al., 2019). Using anti-PSGL1 monoclonal antibody potentially triggers a pro-inflammatory response in tumour tissues, exhibiting notable antitumour activity (DeRogatis et al., 2022; Lin et al., 2023).
Innovative strategies for TAM modulation
Recent strategies explore TAM modulation. One approach involves the engineering of T cells with chimeric antigen receptors (CAR) (Maalej et al., 2023) specifically tailored to recognize and eliminate TAMs. Research shows CAR T cells targeting macrophages are effective against various solid organ tumours, including ovarian and pancreatic cancer (Sanchez-Paulete et al., 2022). Eliminating M2-like FRβ+ TAMs in the murine models of ovarian cancer, colon cancer and melanoma TME through FR-specific CAR-T cells delay tumour progression and prolong life (Rodriguez-Garcia et al., 2021). These CAR-engineered T cells show potential in redirecting immune responses against the tumour. Another method focuses on harnessing invariant natural killer T (iNKT) cells (Li et al., 2021b). These cells possess innate and adaptive immune properties, CAR-iNKT cells use iNKT TCR/CD1d and CAR recognition to deplete TAMs and tumours (Simonetta et al., 2021). Recent studies harness iNKT cells to modulate TAMs, boosting antitumour responses. Other innate T cells, including MAIT, and γδT cells, have potential clinical applications as they target and eliminate TAMs (Li et al., 2022c). In synthesis, these innovative strategies signify a shift in tumour immunotherapy (Table 2).
TABLE 2.
Innovative strategies targeting TAMs in tumour microenvironment.
Cell type | Tumour type | Function |
---|---|---|
FRβ.CAR-T | Ovarian, Pancreatic, Colon, Melanoma | Recognize and eliminate TAMs, delay tumour progression and prolong life |
F4.CAR-T | Orthotopic Lung Tumours | Deplete TAMs, inhibit tumour growth, enhance MHC upregulation via IFNγ, and boost CD8 T cell expansion and tumour cell immune editing |
iNKT | Melanoma, Multiple myeloma, Ovarian | Use iNKT TCR/CD1d and CAR recognition to deplete TAMs |
γδT | Raise MDSCs, induce antitumour responses with zoledronic acid, target monocytes, and kill macrophages | |
MCAR-MAIT | Kill OVCAR3-FG tumour cells, have dual CAR/TCR targeting mechanisms, sustain antitumour capacity in presence of macrophages, and target TAMs |
Prospects of macrophages in cancer
TAMs are an important immune cell type that shapes TME properties. Targeting TAMs effectively blocks the progression of various cancer types. Moreover, popularity of single-cell RNA-sequencing analysis enhances the mechanistic study and preclinical research of TAMs in TME (Tang et al., 2020; Tang et al., 2021a; Chung et al., 2023). Dissecting the heterogeneity and regulatory mechanism of macrophages in cancer at single-cell resolution leads to the discovery of novel macrophage-specific therapeutics targets from the TME, for example, MMT and MNT (Xue et al., 2021; Tang et al., 2022a; Tang et al., 2022b). They are emphasizing the adaptive plasticity of macrophages. MMTs, derived from M2 TAMs with protumour activities, lead to the formation of CAFs. These CAFs are key in driving cancer progression (Chen and Song, 2019; Li et al., 2020). The roles of MMT-derived CAFs in functions, including adaptive immunity suppression, drug resistance, metastasis, and promoting cancer cell stemness warrant investigation. Conversely, MNTs highlight the transformation of TAMs into neuron-like entities, influencing de novo neurogenesis in the TME (Tang et al., 2022b) and contributing to cancer-associated pain (Shepherd et al., 2018). This transition, while prevalent in NSCLC, is also seen in other tumours, emphasizing its importance in cancer pain and tumour innervation (Tang et al., 2022b). Given the impact of cancer pain on quality of life, especially in patients with advanced stages of the disease (Wang et al., 2021c), understanding MNT is vital for pain management strategies. Notably, these transitions were found to be mediated by a Smad3-centric gene network in TAMs, highlighting the potential of macrophage-targeted Smad3 interventions as a promising therapeutic approach in cancer immunotherapy (Tang et al., 2017; Feng et al., 2018; Tang et al., 2021b; Tang et al., 2022b). These new findings lead to the development of effective therapeutic approaches to enhance the efficiency of conventional anticancer treatments as well as the latest immunotherapies which are not primary or secondary resistant in patients with solid cancers (Kim et al., 2019b; Kim et al., 2020; Tang et al., 2020; Chung et al., 2021; Xue et al., 2021). Besides, macrophages are considered as a primary target of anti-inflammatory therapy for cancer prevention, their therapeutic potential is explored by new trials worldwide (Tang et al., 2019; Lee et al., 2021; Tang et al., 2022d). Despite the challenges, a better understanding of the immunodynamics of TAM shows a substantial potential for improving the therapeutic efficiency and clinical outcomes of cancer patients in the future.
Funding Statement
The authors declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the Research Grants Council of Hong Kong (14106518, 14111019, 14111720, and 24102723); RGC Postdoctoral Fellowship Scheme (PDFS2122-4S06); Hong Kong Government Health and Medical Research Fund (10210726); CU Medicine Passion for Perfection Scheme (PFP202210-004) and Faculty Innovation Award (4620528), CUHK Strategic Seed Funding for Collaborative Research Scheme (178896941), Direct Grant for Research (4054722), Postdoctoral Fellowship Scheme (NL/LT/PDFS 2022/0360/22lt and WW/PDFS 2023/0640/23en).
Author contributions
ZZJ: Writing–original draft, Writing–review and editing, Visualization. MK-KC: Writing–original draft, Writing–review and editing, Visualization. AS-WC: Data curation. K-TL: Writing–review and editing. XJ: Writing–review and editing. K-FT: Writing–review and editing. YW: Writing–review and editing. PM-KT: Writing–original draft, Writing–review & editing Conceptualization, Funding acquisition, Investigation, Resources, Supervision. Validation: All authors have read and agreed to the published version.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
- Aburima A., Berger M., Spurgeon B. E. J., Webb B. A., Wraith K. S., Febbraio M., et al. (2021). Thrombospondin-1 promotes hemostasis through modulation of cAMP signaling in blood platelets. Blood 137 (5), 678–689. 10.1182/blood.2020005382 [DOI] [PubMed] [Google Scholar]
- Ahmed I., Ismail N. (2020). M1 and M2 macrophages polarization via mTORC1 influences innate immunity and outcome of ehrlichia infection. J. Cell. Immunol. 2 (3), 108–115. 10.33696/immunology.2.029 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed S., Mohamed H. T., El-Husseiny N., El Mahdy M. M., Safwat G., Diab A. A., et al. (2021). IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling. Biochim. Biophys. Acta Mol. Cell. Res. 1868 (6), 118995. 10.1016/j.bbamcr.2021.118995 [DOI] [PubMed] [Google Scholar]
- Akhtari M., Zargar S. J., Vojdanian M., Jamshidi A., Mahmoudi M. (2021). Monocyte-derived and M1 macrophages from ankylosing spondylitis patients released higher TNF-α and expressed more IL1B in response to BzATP than macrophages from healthy subjects. Sci. Rep. 11 (1), 17842. 10.1038/s41598-021-96262-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alhamdi J. R., Peng T., Al-Naggar I. M., Hawley K. L., Spiller K. L., Kuhn L. T. (2019). Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings. Biomaterials 196, 90–99. 10.1016/j.biomaterials.2018.07.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Argyle D., Kitamura T. (2018). Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front. Immunol. 9, 2629. 10.3389/fimmu.2018.02629 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astarita J. L., Dominguez C. X., Tan C., Guillen J., Pauli M. L., Labastida R., et al. (2023). Treg specialization and functions beyond immune suppression. Clin. Exp. Immunol. 211 (2), 176–183. 10.1093/cei/uxac123 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Badmann S., Heublein S., Mayr D., Reischer A., Liao Y., Kolben T., et al. (2020). M2 macrophages infiltrating epithelial ovarian cancer express MDR1: a feature that may account for the poor prognosis. Cells 9 (5), 1224. 10.3390/cells9051224 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bai R., Li Y., Jian L., Yang Y., Zhao L., Wei M. (2022). The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol. Cancer 21 (1), 177. 10.1186/s12943-022-01645-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bain C. C., MacDonald A. S. (2022). The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol. 15 (2), 223–234. 10.1038/s41385-021-00480-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balic J. J., Albargy H., Luu K., Kirby F. J., Jayasekara W. S. N., Mansell F., et al. (2020). STAT3 serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1β expression. Nat. Commun. 11 (1), 3816. 10.1038/s41467-020-17669-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker W., Nagarkatti M., Nagarkatti P. S. (2018). miR-466a targeting of TGF-β2 contributes to FoxP3+ regulatory T cell differentiation in a murine model of allogeneic transplantation. Front. Immunol. 9, 688. 10.3389/fimmu.2018.00688 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyranvand Nejad E., Labrie C., van Elsas M. J., Kleinovink J. W., Mittrücker H. W., Franken K. L. M. C., et al. (2021). IL-6 signaling in macrophages is required for immunotherapy-driven regression of tumors. J. Immunother. Cancer 9 (4), e002460. 10.1136/jitc-2021-002460 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binnewies M., Pollack J. L., Rudolph J., Dash S., Abushawish M., Lee T., et al. (2021). Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell. Rep. 37 (3), 109844. 10.1016/j.celrep.2021.109844 [DOI] [PubMed] [Google Scholar]
- Bissinger S., Hage C., Wagner V., Maser I. P., Brand V., Schmittnaegel M., et al. (2021). Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Sci. Transl. Med. 13 (598), eabd4550. 10.1126/scitranslmed.abd4550 [DOI] [PubMed] [Google Scholar]
- Brempelis K. J., Cowan C. M., Kreuser S. A., Labadie K. P., Prieskorn B. M., Lieberman N. A. P., et al. (2020). Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses. J. Immunother. Cancer 8 (2), e001356. 10.1136/jitc-2020-001356 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai J., Xia L., Li J., Ni S., Song H., Wu X. (2019). Tumor-associated macrophages derived TGF-β‒induced epithelial to mesenchymal transition in colorectal cancer cells through smad2,3-4/snail signaling pathway. Cancer Res. Treat. 51 (1), 252–266. 10.4143/crt.2017.613 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao M., Isaac R., Yan W., Ruan X., Jiang L., Wan Y., et al. (2022). Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nat. Cell. Biol. 24 (6), 954–967. 10.1038/s41556-022-00919-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassetta L., Pollard J. W. (2018). Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17 (12), 887–904. 10.1038/nrd.2018.169 [DOI] [PubMed] [Google Scholar]
- Cassetta L., Fragkogianni S., Sims A. H., Swierczak A., Forrester L. M., Zhang H., et al. (2019). Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 35 (4), 588–602. 10.1016/j.ccell.2019.02.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celik M. O., Labuz D., Keye J., Glauben R., Machelska H. (2020). IL-4 induces M2 macrophages to produce sustained analgesia via opioids. JCI Insight 5 (4), e133093. 10.1172/jci.insight.133093 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X., Song E. (2019). Turning foes to friends: targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 18 (2), 99–115. 10.1038/s41573-018-0004-1 [DOI] [PubMed] [Google Scholar]
- Chen H. M., van der Touw W., Wang Y. S., Kang K., Mai S., Zhang J., et al. (2018). Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J. Clin. Invest. 128 (12), 5647–5662. 10.1172/JCI97570 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Zhang K., Zhi Y., Wu Y., Chen B., Bai J., et al. (2021). Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clin. Transl. Med. 11 (9), e478. 10.1002/ctm2.478 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Zhao D., Zhang L., Zhang J., Xiao Y., Wu Q., et al. (2022a). Tumor-associated macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell carcinoma (ESCC). Cell. Mol. Immunol. 19 (9), 1054–1066. 10.1038/s41423-022-00903-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z., Wu J., Wang L., Zhao H., He J. (2022b). Tumor-associated macrophages of the M1/M2 phenotype are involved in the regulation of malignant biological behavior of breast cancer cells through the EMT pathway. Med. Oncol. 39 (5), 83. 10.1007/s12032-022-01670-7 [DOI] [PubMed] [Google Scholar]
- Cheng S., Li Z., Gao R., Xing B., Gao Y., Yang Y., et al. (2021). A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell. 184 (3), 792–809 e23. 10.1016/j.cell.2021.01.010 [DOI] [PubMed] [Google Scholar]
- Cho H., Kwon H. Y., Sharma A., Lee S. H., Liu X., Miyamoto N., et al. (2022). Visualizing inflammation with an M1 macrophage selective probe via GLUT1 as the gating target. Nat. Commun. 13 (1), 5974. 10.1038/s41467-022-33526-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi W., Lee J., Lee J., Lee S. H., Kim S. (2019). Hepatocyte growth factor regulates macrophage transition to the M2 phenotype and promotes murine skeletal muscle regeneration. Front. Physiol. 10, 914. 10.3389/fphys.2019.00914 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christofides A., Strauss L., Yeo A., Cao C., Charest A., Boussiotis V. A. (2022). The complex role of tumor-infiltrating macrophages. Nat. Immunol. 23 (8), 1148–1156. 10.1038/s41590-022-01267-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung S., Overstreet J. M., Li Y., Wang Y., Niu A., Wang S., et al. (2018). TGF-beta promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration. JCI Insight 3 (21), e123563. 10.1172/jci.insight.123563 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung J. Y., Chan M. K. K., Tang P. C. T., Chan A. S. W., Meng X. M., Chung J. S. Y., et al. (2021). AANG: a natural compound formula for overcoming multidrug resistance via synergistic rebalancing the TGF-β/Smad signalling in hepatocellular carcinoma. J. Cell. Mol. Med. 25 (20), 9805–9813. 10.1111/jcmm.16928 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung J. Y., Tang P. C. T., Chan M. K. K., Xue V. W., Huang X. R., Ng C., et al. (2023). Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma. Nat. Commun. 14 (1), 1794. 10.1038/s41467-023-37515-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cioffi M., Trabulo S., Hidalgo M., Costello E., Greenhalf W., Erkan M., et al. (2015). Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms. Clin. Cancer Res. 21 (10), 2325–2337. 10.1158/1078-0432.CCR-14-1399 [DOI] [PubMed] [Google Scholar]
- Coussens L. M., Zitvogel L., Palucka A. K. (2013). Neutralizing tumour-promoting chronic inflammation: a magic bullet? Science 339 (6117), 286–291. 10.1126/science.1232227 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowman S. J., Fuja D. G., Liu X. D., Tidwell R. S. S., Kandula N., Sirohi D., et al. (2020). Macrophage HIF-1α is an independent prognostic indicator in kidney cancer. Clin. Cancer Res. 26 (18), 4970–4982. 10.1158/1078-0432.CCR-19-3890 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dang M. T., Gonzalez M. V., Gaonkar K. S., Rathi K. S., Young P., Arif S., et al. (2021). Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality. Cell. Rep. 34 (13), 108917. 10.1016/j.celrep.2021.108917 [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Vlaminck K., Van Hove H., Kancheva D., Scheyltjens I., Pombo Antunes A. R., Bastos J., et al. (2022). Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity 55 (11), 2085–2102 e9. 10.1016/j.immuni.2022.09.005 [DOI] [PubMed] [Google Scholar]
- DeRogatis J. M., Viramontes K. M., Neubert E. N., Henriquez M. L., Guerrero-Juarez C. F., Tinoco R. (2022). Targeting the PSGL-1 immune checkpoint promotes immunity to PD-1-resistant melanoma. Cancer Immunol. Res. 10 (5), 612–625. 10.1158/2326-6066.CIR-21-0690 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desterke C., Turhan A. G., Bennaceur-Griscelli A., Griscelli F. (2021). HLA-dependent heterogeneity and macrophage immunoproteasome activation during lung COVID-19 disease. J. Transl. Med. 19 (1), 290. 10.1186/s12967-021-02965-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diwanji N., Bergmann A. (2020). Basement membrane damage by ROS- and JNK-mediated Mmp2 activation drives macrophage recruitment to overgrown tissue. Nat. Commun. 11 (1), 3631. 10.1038/s41467-020-17399-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong N., Shi X., Wang S., Gao Y., Kuang Z., Xie Q., et al. (2019). M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br. J. Cancer 121 (1), 22–33. 10.1038/s41416-019-0482-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dongre A., Weinberg R. A. (2019). New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell. Biol. 20 (2), 69–84. 10.1038/s41580-018-0080-4 [DOI] [PubMed] [Google Scholar]
- Dooling L. J., Andrechak J. C., Hayes B. H., Kadu S., Zhang W., Pan R., et al. (2023). Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nat. Biomed. Eng. 7, 1081–1096. 10.1038/s41551-023-01031-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorrington M. G., Fraser I. D. C. (2019). NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front. Immunol. 10, 705. 10.3389/fimmu.2019.00705 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elomaa H., Ahtiainen M., Väyrynen S. A., Ogino S., Nowak J. A., Lau M. C., et al. (2023). Spatially resolved multimarker evaluation of CD274 (PD-L1)/PDCD1 (PD-1) immune checkpoint expression and macrophage polarisation in colorectal cancer. Br. J. Cancer 128 (11), 2104–2115. 10.1038/s41416-023-02238-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erlandsson A., Carlsson J., Lundholm M., Fält A., Andersson S. O., Andrén O., et al. (2019). M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate 79 (4), 363–369. 10.1002/pros.23742 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Etzerodt A., Tsalkitzi K., Maniecki M., Damsky W., Delfini M., Baudoin E., et al. (2019). Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression. J. Exp. Med. 216 (10), 2394–2411. 10.1084/jem.20182124 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eyre R., Alférez D. G., Santiago-Gómez A., Spence K., McConnell J. C., Hart C., et al. (2019). Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat. Commun. 10 (1), 5016. 10.1038/s41467-019-12807-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang T., Huang Y. K., Wei J., Monterrosa Mena J. E., Lakey P. S. J., Kleinman M. T., et al. (2022). Superoxide release by macrophages through NADPH oxidase activation dominating chemistry by isoprene secondary organic aerosols and quinones to cause oxidative damage on membranes. Environ. Sci. Technol. 56 (23), 17029–17038. 10.1021/acs.est.2c03987 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fekete T., Bencze D., Szabo A., Csoma E., Biro T., Bacsi A., et al. (2018). Regulatory NLRs control the RLR-mediated type I interferon and inflammatory responses in human dendritic cells. Front. Immunol. 9, 2314. 10.3389/fimmu.2018.02314 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng M., Tang P. M. K., Huang X. R., Sun S. F., You Y. K., Xiao J., et al. (2018). TGF-Beta mediates renal fibrosis via the smad3-erbb4-IR long noncoding RNA Axis. Mol. Ther. 26 (1), 148–161. 10.1016/j.ymthe.2017.09.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flores-Toro J. A., Luo D., Gopinath A., Sarkisian M. R., Campbell J. J., Charo I. F., et al. (2020). CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc. Natl. Acad. Sci. U. S. A. 117 (2), 1129–1138. 10.1073/pnas.1910856117 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frising U. C., Ribo S., Doglio M. G., Malissen B., van Loo G., Wullaert A. (2022). Nlrp3 inflammasome activation in macrophages suffices for inducing autoinflammation in mice. EMBO Rep. 23 (7), e54339. 10.15252/embr.202154339 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuse M., Kuwabara H., Ikeda N., Hattori Y., Ichikawa T., Kagawa N., et al. (2020). PD-L1 and PD-L2 expression in the tumor microenvironment including peritumoral tissue in primary central nervous system lymphoma. BMC Cancer 20 (1), 277. 10.1186/s12885-020-06755-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Fojeda B., Minutti C. M., Montero-Fernández C., Stamme C., Casals C. (2022). Signaling pathways that mediate alveolar macrophage activation by surfactant protein A and IL-4. Front. Immunol. 13, 860262. 10.3389/fimmu.2022.860262 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greaney S. K., Algazi A. P., Tsai K. K., Takamura K. T., Chen L., Twitty C. G., et al. (2020). Intratumoral plasmid IL12 electroporation therapy in patients with advanced melanoma induces systemic and intratumoral T-cell responses. Cancer Immunol. Res. 8 (2), 246–254. 10.1158/2326-6066.CIR-19-0359 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene C. J., Nguyen J. A., Cheung S. M., Arnold C. R., Balce D. R., Wang Y. T., et al. (2022). Macrophages disseminate pathogen associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes. Nat. Commun. 13 (1), 3072. 10.1038/s41467-022-30654-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu X., Shi Y., Dong M., Jiang L., Yang J., Liu Z. (2021). Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell. Death Dis. 12 (9), 818. 10.1038/s41419-021-04087-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guan X., Wang Y., Sun Y., Zhang C., Ma S., Zhang D., et al. (2021). CTLA4-Mediated immunosuppression in glioblastoma is associated with the infiltration of macrophages in the tumor microenvironment. J. Inflamm. Res. 14, 7315–7329. 10.2147/JIR.S341981 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerriero J. L. (2019). Macrophages: their untold story in T cell activation and function. Int. Rev. Cell. Mol. Biol. 342, 73–93. 10.1016/bs.ircmb.2018.07.001 [DOI] [PubMed] [Google Scholar]
- Guilliams M., Svedberg F. R. (2021). Does tissue imprinting restrict macrophage plasticity? Nat. Immunol. 22 (2), 118–127. 10.1038/s41590-020-00849-2 [DOI] [PubMed] [Google Scholar]
- Gunassekaran G. R., Poongkavithai Vadevoo S. M., Baek M. C., Lee B. (2021). M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials 278, 121137. 10.1016/j.biomaterials.2021.121137 [DOI] [PubMed] [Google Scholar]
- Guo C. J., Atochina-Vasserman E. N., Abramova E., Smith L. C., Beers M. F., Gow A. J. (2019). Surfactant protein-D modulation of pulmonary macrophage phenotype is controlled by S-nitrosylation. Am. J. Physiol. Lung Cell. Mol. Physiol. 317 (5), L539–L549. 10.1152/ajplung.00506.2018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haloul M., Oliveira E. R. A., Kader M., Wells J. Z., Tominello T. R., El Andaloussi A., et al. (2019). mTORC1-mediated polarization of M1 macrophages and their accumulation in the liver correlate with immunopathology in fatal ehrlichiosis. Sci. Rep. 9 (1), 14050. 10.1038/s41598-019-50320-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannan C. J., Lewis D., O'Leary C., Waqar M., Brough D., Couper K. N., et al. (2023). Increased circulating chemokines and macrophage recruitment in growing vestibular schwannomas. Neurosurgery 92 (3), 581–589. 10.1227/neu.0000000000002252 [DOI] [PubMed] [Google Scholar]
- Haque A., Moriyama M., Kubota K., Ishiguro N., Sakamoto M., Chinju A., et al. (2019). CD206+ tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production. Sci. Rep. 9 (1), 14611. 10.1038/s41598-019-51149-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- He L., Jhong J. H., Chen Q., Huang K. Y., Strittmatter K., Kreuzer J., et al. (2021). Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. Cell. Rep. 37 (5), 109955. 10.1016/j.celrep.2021.109955 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernandez G. E., Ma F., Martinez G., Firozabadi N. B., Salvador J., Juang L. J., et al. (2022). Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state. Nat. Cardiovasc Res. 1 (1), 67–84. 10.1038/s44161-021-00006-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou Y., Zhu L., Tian H., Sun H. X., Wang R., Zhang L., et al. (2018). IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis. Protein Cell. 9 (12), 1027–1038. 10.1007/s13238-018-0505-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsieh M. H., Chen P. C., Hsu H. Y., Liu J. C., Ho Y. S., Lin Y. J., et al. (2023). Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell. Mol. Immunol. 20 (1), 38–50. 10.1038/s41423-022-00946-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu M., Zhang R., Yang J., Zhao C., Liu W., Huang Y., et al. (2023). The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell. Death Dis. 14 (3), 222. 10.1038/s41419-023-05733-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C., Hu F., Song D., Sun X., Liu A., Wu Q., et al. (2022). EZH2-triggered methylation of SMAD3 promotes its activation and tumor metastasis. J. Clin. Invest. 132 (5), e152394. 10.1172/JCI152394 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang I., Kim J. W., Ylaya K., Chung E. J., Kitano H., Perry C., et al. (2020). Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J. Transl. Med. 18 (1), 443. 10.1186/s12967-020-02618-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Im J. H., Buzzelli J. N., Jones K., Franchini F., Gordon-Weeks A., Markelc B., et al. (2020). FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat. Commun. 11 (1), 4064. 10.1038/s41467-020-17914-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irizarry-Caro R. A., McDaniel M. M., Overcast G. R., Jain V. G., Troutman T. D., Pasare C. (2020). TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc. Natl. Acad. Sci. U. S. A. 117 (48), 30628–30638. 10.1073/pnas.2009778117 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii T., Mimura I., Nagaoka K., Naito A., Sugasawa T., Kuroda R., et al. (2022). Effect of M2-like macrophages of the injured-kidney cortex on kidney cancer progression. Cell. Death Discov. 8 (1), 480. 10.1038/s41420-022-01255-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaynes J. M., Sable R., Ronzetti M., Bautista W., Knotts Z., Abisoye-Ogunniyan A., et al. (2020). Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci. Transl. Med. 12 (530), eaax6337. 10.1126/scitranslmed.aax6337 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeong H., Kim S., Hong B. J., Lee C. J., Kim Y. E., Bok S., et al. (2019). Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79 (4), 795–806. 10.1158/0008-5472.CAN-18-2545 [DOI] [PubMed] [Google Scholar]
- Jia X., Yan B., Tian X., Liu Q., Jin J., Shi J., et al. (2021). CD47/SIRPα pathway mediates cancer immune escape and immunotherapy. Int. J. Biol. Sci. 17 (13), 3281–3287. 10.7150/ijbs.60782 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang P., Gao W., Ma T., Wang R., Piao Y., Dong X., et al. (2019). CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages. Theranostics 9 (10), 2950–2966. 10.7150/thno.29617 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin M. Z., Jin W. L. (2020). The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target Ther. 5 (1), 166. 10.1038/s41392-020-00280-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston R. J., Su L. J., Pinckney J., Critton D., Boyer E., Krishnakumar A., et al. (2019). VISTA is an acidic pH-selective ligand for PSGL-1. Nature 574 (7779), 565–570. 10.1038/s41586-019-1674-5 [DOI] [PubMed] [Google Scholar]
- Kaplanov I., Carmi Y., Kornetsky R., Shemesh A., Shurin G. V., Shurin M. R., et al. (2019). Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc. Natl. Acad. Sci. U. S. A. 116 (4), 1361–1369. 10.1073/pnas.1812266115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katzenelenbogen Y., Sheban F., Yalin A., Yofe I., Svetlichnyy D., Jaitin D. A., et al. (2020). Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell. 182 (4), 872–885. 10.1016/j.cell.2020.06.032 [DOI] [PubMed] [Google Scholar]
- Kawasaki T., Ikegawa M., Yunoki K., Otani H., Ori D., Ishii K. J., et al. (2022). Alveolar macrophages instruct CD8(+) T cell expansion by antigen cross-presentation in lung. Cell. Rep. 41 (11), 111828. 10.1016/j.celrep.2022.111828 [DOI] [PubMed] [Google Scholar]
- Kennedy A., Waters E., Rowshanravan B., Hinze C., Williams C., Janman D., et al. (2022). Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat. Immunol. 23 (9), 1365–1378. 10.1038/s41590-022-01289-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kermanizadeh A., Brown D. M., Moritz W., Stone V. (2019). The importance of inter-individual Kupffer cell variability in the governance of hepatic toxicity in a 3D primary human liver microtissue model. Sci. Rep. 9 (1), 7295. 10.1038/s41598-019-43870-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kesh K., Gupta V. K., Durden B., Garrido V., Mateo-Victoriano B., Lavania S. P., et al. (2020). Therapy resistance, cancer stem cells and ECM in cancer: the matrix reloaded. Cancers (Basel) 12 (10), 3067. 10.3390/cancers12103067 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidwell C. U., Casalini J. R., Pradeep S., Scherer S. D., Greiner D., Bayik D., et al. (2023). Transferred mitochondria accumulate reactive oxygen species, promoting proliferation. Elife 12, e85494. 10.7554/eLife.85494 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim H., Wang S. Y., Kwak G., Yang Y., Kwon I. C., Kim S. H. (2019a). Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv. Sci. (Weinh) 6 (20), 1900513. 10.1002/advs.201900513 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim H., Chung H., Kim J., Choi D. H., Shin Y., Kang Y. G., et al. (2019b). Macrophages-Triggered sequential remodeling of endothelium-interstitial matrix to form pre-metastatic niche in microfluidic tumor microenvironment. Adv. Sci. (Weinh) 6 (11), 1900195. 10.1002/advs.201900195 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim S. H., Saeidi S., Zhong X., Gwak S. Y., Muna I. A., Park S. A., et al. (2020). Breast cancer cell debris diminishes therapeutic efficacy through heme oxygenase-1-mediated inactivation of M1-like tumor-associated macrophages. Neoplasia 22 (11), 606–616. 10.1016/j.neo.2020.08.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura S., Nanbu U., Noguchi H., Harada Y., Kumamoto K., Sasaguri Y., et al. (2019). Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J. Oral Pathol. Med. 48 (8), 677–685. 10.1111/jop.12885 [DOI] [PubMed] [Google Scholar]
- Klichinsky M., Ruella M., Shestova O., Lu X. M., Best A., Zeeman M., et al. (2020). Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38 (8), 947–953. 10.1038/s41587-020-0462-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohno K., Koya-Miyata S., Harashima A., Tsukuda T., Katakami M., Ariyasu T., et al. (2021). Inflammatory M1-like macrophages polarized by NK-4 undergo enhanced phenotypic switching to an anti-inflammatory M2-like phenotype upon co-culture with apoptotic cells. J. Inflamm. (Lond) 18 (1), 2. 10.1186/s12950-020-00267-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraaij M. D., Savage N. D. L., van der Kooij S. W., Koekkoek K., Wang J., van den Berg J. M., et al. (2010). Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl. Acad. Sci. U. S. A. 107 (41), 17686–17691. 10.1073/pnas.1012016107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar R., Mickael C., Kassa B., Sanders L., Hernandez-Saavedra D., Koyanagi D. E., et al. (2020). Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension. Cardiovasc Res. 116 (12), 2021–2030. 10.1093/cvr/cvz304 [DOI] [PMC free article] [PubMed] [Google Scholar]
- La Fleur L., Botling J., He F., Pelicano C., Zhou C., He C., et al. (2021). Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res. 81 (4), 956–967. 10.1158/0008-5472.CAN-20-1885 [DOI] [PubMed] [Google Scholar]
- Lai Y. S., Wahyuningtyas R., Aui S. P., Chang K. T. (2019). Autocrine VEGF signalling on M2 macrophages regulates PD-L1 expression for immunomodulation of T cells. J. Cell. Mol. Med. 23 (2), 1257–1267. 10.1111/jcmm.14027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarova M., Steinle A. (2019). Impairment of nkg2d-mediated tumor immunity by TGF-β. Front. Immunol. 10, 2689. 10.3389/fimmu.2019.02689 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lechner A., Henkel F. D. R., Hartung F., Bohnacker S., Alessandrini F., Gubernatorova E. O., et al. (2022). Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma. J. Allergy Clin. Immunol. 149 (6), 2078–2090. 10.1016/j.jaci.2021.11.026 [DOI] [PubMed] [Google Scholar]
- Lee J., Son W., Hong J., Song Y., Yang C. S., Kim Y. H. (2021). Down-regulation of TNF-α via macrophage-targeted RNAi system for the treatment of acute inflammatory sepsis. J. Control Release 336, 344–353. 10.1016/j.jconrel.2021.06.022 [DOI] [PubMed] [Google Scholar]
- Li D., Wu M. (2021). Pattern recognition receptors in health and diseases. Signal Transduct. Target Ther. 6 (1), 291. 10.1038/s41392-021-00687-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li F., Lv B., Liu Y., Hua T., Han J., Sun C., et al. (2018). Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells. Oncoimmunology 7 (2), e1391973. 10.1080/2162402X.2017.1391973 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W., Zhang X., Wu F., Zhou Y., Bao Z., Li H., et al. (2019a). Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell. Death Dis. 10 (12), 918. 10.1038/s41419-019-2131-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li K., Yang L., Li J., Guan C., Zhang S., Lao X., et al. (2019b). TGFβ induces stemness through non-canonical AKT-FOXO3a axis in oral squamous cell carcinoma. EBioMedicine 48, 70–80. 10.1016/j.ebiom.2019.09.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C., Xue V. W., Wang Q. M., Lian G. Y., Huang X. R., Lee T. L., et al. (2020). The mincle/syk/NF-κB signaling circuit is essential for maintaining the protumoral activities of tumor-associated macrophages. Cancer Immunol. Res. 8 (8), 1004–1017. 10.1158/2326-6066.CIR-19-0782 [DOI] [PubMed] [Google Scholar]
- Li X., Su X., Liu R., Pan Y., Fang J., Cao L., et al. (2021a). HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene 40 (10), 1836–1850. 10.1038/s41388-020-01636-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y. R., Zhou Y., Kim Y. J., Zhu Y., Ma F., Yu J., et al. (2021b). Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. Cell. Rep. Med. 2 (11), 100449. 10.1016/j.xcrm.2021.100449 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H., Yang P., Wang J., Zhang J., Ma Q., Jiang Y., et al. (2022a). HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J. Hematol. Oncol. 15 (1), 2. 10.1186/s13045-021-01223-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li M., He L., Zhu J., Zhang P., Liang S. (2022b). Targeting tumor-associated macrophages for cancer treatment. Cell. Biosci. 12 (1), 85. 10.1186/s13578-022-00823-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y. R., Brown J., Yu Y., Lee D., Zhou K., Dunn Z. S., et al. (2022c). Targeting immunosuppressive tumor-associated macrophages using innate T cells for enhanced antitumor reactivity. Cancers (Basel) 14 (11), 2749. 10.3390/cancers14112749 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y. R., Dunn Z. S., Yu Y., Li M., Wang P., Yang L. (2023). Advancing cell-based cancer immunotherapy through stem cell engineering. Cell. Stem Cell. 30 (5), 592–610. 10.1016/j.stem.2023.02.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang S., Ma H. Y., Zhong Z., Dhar D., Liu X., Xu J., et al. (2019). NADPH oxidase 1 in liver macrophages promotes inflammation and tumor development in mice. Gastroenterology 156 (4), 1156–1172. 10.1053/j.gastro.2018.11.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang N., Bing Z., Wang Y., Liu X., Guo C., Cao L., et al. (2022). Clinical implications of EGFR-associated MAPK/ERK pathway in multiple primary lung cancer. Clin. Transl. Med. 12 (5), e847. 10.1002/ctm2.847 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y., Xu J., Lan H. (2019). Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12 (1), 76. 10.1186/s13045-019-0760-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin S. C., Liao Y. C., Chen P. M., Yang Y. Y., Wang Y. H., Tung S. L., et al. (2022). Periostin promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-associated fibroblasts via integrin-mediated NF-κB and TGF-β2 signaling. J. Biomed. Sci. 29 (1), 109. 10.1186/s12929-022-00888-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y., Huang S., Qi Y., Xie L., Jiang J., Li H., et al. (2023). PSGL-1 is a novel tumor microenvironment prognostic biomarker with cervical high-grade squamous lesions and more. Front. Oncol. 13, 1052201. 10.3389/fonc.2023.1052201 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu W., Sun Y. (2023). Epigenetics in glaucoma: a link between histone methylation and neurodegeneration. J. Clin. Invest. 133 (8), e173784. 10.1172/JCI173784 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L., Zhang L., Yang L., Li H., Li R., Yu J., et al. (2017). Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front. Immunol. 8, 404. 10.3389/fimmu.2017.00404 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L., Ye Y., Zhu X. (2019). MMP-9 secreted by tumor associated macrophages promoted gastric cancer metastasis through a PI3K/AKT/Snail pathway. Biomed. Pharmacother. 117, 109096. 10.1016/j.biopha.2019.109096 [DOI] [PubMed] [Google Scholar]
- Liu Y., Zugazagoitia J., Ahmed F. S., Henick B. S., Gettinger S. N., Herbst R. S., et al. (2020). Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. Clin. Cancer Res. 26 (4), 970–977. 10.1158/1078-0432.CCR-19-1040 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu J., Geng X., Hou J., Wu G. (2021). New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell. Int. 21 (1), 389. 10.1186/s12935-021-02089-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu J. Q., Zhang C., Zhang X., Yan J., Zeng C., Talebian F., et al. (2022). Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J. Control Release 345, 306–313. 10.1016/j.jconrel.2022.03.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Z. L., Chen H. H., Zheng L. L., Sun L. P., Shi L. (2023a). Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target Ther. 8 (1), 198. 10.1038/s41392-023-01460-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu H., Zhao Q., Tan L., Wu X., Huang R., Zuo Y., et al. (2023b). Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma. Cancer Cell. 41 (4), 693–710 e8. 10.1016/j.ccell.2023.03.004 [DOI] [PubMed] [Google Scholar]
- Liu Y., Wang Y., Yang Y., Weng L., Wu Q., Zhang J., et al. (2023c). Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct. Target Ther. 8 (1), 104. 10.1038/s41392-023-01365-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loeuillard E., Yang J., Buckarma E., Wang J., Liu Y., Conboy C., et al. (2020). Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J. Clin. Invest. 130 (10), 5380–5396. 10.1172/JCI137110 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez de Andres J., Griñán-Lisón C., Jiménez G., Marchal J. A. (2020). Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J. Hematol. Oncol. 13 (1), 136. 10.1186/s13045-020-00966-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu C. Y., Santosa K. B., Jablonka-Shariff A., Vannucci B., Fuchs A., Turnbull I., et al. (2020). Macrophage-derived vascular endothelial growth factor-A is integral to neuromuscular junction reinnervation after nerve injury. J. Neurosci. 40 (50), 9602–9616. 10.1523/JNEUROSCI.1736-20.2020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lugano R., Ramachandran M., Dimberg A. (2020). Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77 (9), 1745–1770. 10.1007/s00018-019-03351-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundahl M. L. E., Mitermite M., Ryan D. G., Case S., Williams N. C., Yang M., et al. (2022). Macrophage innate training induced by IL-4 and IL-13 activation enhances OXPHOS driven anti-mycobacterial responses. Elife 11, e74690. 10.7554/eLife.74690 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo W. J., Yu S. L., Chang C. C., Chien M. H., Chang Y. L., Liao K. M., et al. (2022). HLJ1 amplifies endotoxin-induced sepsis severity by promoting IL-12 heterodimerization in macrophages. Elife 11, e76094. 10.7554/eLife.76094 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lv W., Guo H., Wang J., Ma R., Niu L., Shang Y. (2023). PDLIM2 can inactivate the TGF-beta/Smad pathway to inhibit the malignant behavior of ovarian cancer cells. Cell. Biochem. Funct. 41, 542–552. 10.1002/cbf.3801 [DOI] [PubMed] [Google Scholar]
- Maalej K. M., Merhi M., Inchakalody V. P., Mestiri S., Alam M., Maccalli C., et al. (2023). CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol. Cancer 22 (1), 20. 10.1186/s12943-023-01723-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maier B., Leader A. M., Chen S. T., Tung N., Chang C., LeBerichel J., et al. (2020). A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580 (7802), 257–262. 10.1038/s41586-020-2134-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maldonado L. A. G., Nascimento C. R., Rodrigues Fernandes N. A., Silva A. L. P., D'Silva N. J., Rossa C., Jr (2022). Influence of tumor cell-derived TGF-β on macrophage phenotype and macrophage-mediated tumor cell invasion. Int. J. Biochem. Cell. Biol. 153, 106330. 10.1016/j.biocel.2022.106330 [DOI] [PubMed] [Google Scholar]
- Mantovani A., Allavena P., Marchesi F., Garlanda C. (2022). Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21 (11), 799–820. 10.1038/s41573-022-00520-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marigo I., Trovato R., Hofer F., Ingangi V., Desantis G., Leone K., et al. (2020). Disabled homolog 2 controls prometastatic activity of tumor-associated macrophages. Cancer Discov. 10 (11), 1758–1773. 10.1158/2159-8290.CD-20-0036 [DOI] [PubMed] [Google Scholar]
- Mascarau R., Woottum M., Fromont L., Gence R., Cantaloube-Ferrieu V., Vahlas Z., et al. (2023). Productive HIV-1 infection of tissue macrophages by fusion with infected CD4+ T cells. J. Cell. Biol. 222 (5), e202205103. 10.1083/jcb.202205103 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattiola I., Pesant M., Tentorio P. F., Molgora M., Marcenaro E., Lugli E., et al. (2015). Priming of human resting NK cells by autologous M1 macrophages via the engagement of IL-1β, IFN-β, and IL-15 pathways. J. Immunol. 195 (6), 2818–2828. 10.4049/jimmunol.1500325 [DOI] [PubMed] [Google Scholar]
- McCaw T. R., Li M., Starenki D., Liu M., Cooper S. J., Arend R. C., et al. (2019). Histone deacetylase inhibition promotes intratumoral CD8+ T-cell responses, sensitizing murine breast tumors to anti-PD1. Cancer Immunol. Immunother. 68 (12), 2081–2094. 10.1007/s00262-019-02430-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molgora M., Esaulova E., Vermi W., Hou J., Chen Y., Luo J., et al. (2020). TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell. 182 (4), 886–900. 10.1016/j.cell.2020.07.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morhardt T. L., Hayashi A., Ochi T., Quirós M., Kitamoto S., Nagao-Kitamoto H., et al. (2019). IL-10 produced by macrophages regulates epithelial integrity in the small intestine. Sci. Rep. 9 (1), 1223. 10.1038/s41598-018-38125-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosser D. M., Hamidzadeh K., Goncalves R. (2021). Macrophages and the maintenance of homeostasis. Cell. Mol. Immunol. 18 (3), 579–587. 10.1038/s41423-020-00541-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mouton A. J., Aitken N. M., Moak S. P., do Carmo J. M., da Silva A. A., Omoto A. C. M., et al. (2023). Temporal changes in glucose metabolism reflect polarization in resident and monocyte-derived macrophages after myocardial infarction. Front. Cardiovasc Med. 10, 1136252. 10.3389/fcvm.2023.1136252 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muniz-Bongers L. R., McClain C. B., Saxena M., Bongers G., Merad M., Bhardwaj N. (2021). MMP2 and TLRs modulate immune responses in the tumor microenvironment. JCI Insight 6 (12), e144913. 10.1172/jci.insight.144913 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muraoka D., Seo N., Hayashi T., Tahara Y., Fujii K., Tawara I., et al. (2019). Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J. Clin. Invest. 129 (3), 1278–1294. 10.1172/JCI97642 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagata E., Masuda H., Nakayama T., Netsu S., Yuzawa H., Fujii N., et al. (2019). Insufficient production of IL-10 from M2 macrophages impairs in vitro endothelial progenitor cell differentiation in patients with Moyamoya disease. Sci. Rep. 9 (1), 16752. 10.1038/s41598-019-53114-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nalio Ramos R., Missolo-Koussou Y., Gerber-Ferder Y., Bromley C. P., Bugatti M., Núñez N. G., et al. (2022). Tissue-resident FOLR2(+) macrophages associate with CD8(+) T cell infiltration in human breast cancer. Cell. 185 (7), 1189–1207 e25. 10.1016/j.cell.2022.02.021 [DOI] [PubMed] [Google Scholar]
- Natale G., Bocci G. (2023). Discovery and development of tumor angiogenesis assays. Methods Mol. Biol. 2572, 1–37. 10.1007/978-1-0716-2703-7_1 [DOI] [PubMed] [Google Scholar]
- Nau G. J., Richmond J. F. L., Schlesinger A., Jennings E. G., Lander E. S., Young R. A. (2002). Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. U. S. A. 99 (3), 1503–1508. 10.1073/pnas.022649799 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu C., Thiele Y., Horr F., Beckers C., Frank N., Marx G., et al. (2022). DAMPs released from proinflammatory macrophages induce inflammation in cardiomyocytes via activation of TLR4 and TNFR. Int. J. Mol. Sci. 23 (24), 15522. 10.3390/ijms232415522 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ning Y., Cui Y., Li X., Cao X., Chen A., Xu C., et al. (2018). Co-culture of ovarian cancer stem-like cells with macrophages induced SKOV3 cells stemness via IL-8/STAT3 signaling. Biomed. Pharmacother. 103, 262–271. 10.1016/j.biopha.2018.04.022 [DOI] [PubMed] [Google Scholar]
- Nost T. H., Alcala K., Urbarova I., Byrne K. S., Guida F., Sandanger T. M., et al. (2021). Systemic inflammation markers and cancer incidence in the UK Biobank. Eur. J. Epidemiol. 36 (8), 841–848. 10.1007/s10654-021-00752-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ntokou A., Dave J. M., Kauffman A. C., Sauler M., Ryu C., Hwa J., et al. (2021). Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension. JCI Insight 6 (6), e139067. 10.1172/jci.insight.139067 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nunez S. Y., Ziblat A., Secchiari F., Torres N. I., Sierra J. M., Raffo Iraolagoitia X. L., et al. (2018). Human M2 macrophages limit NK cell effector functions through secretion of TGF-beta and engagement of CD85j. J. Immunol. 200 (3), 1008–1015. 10.4049/jimmunol.1700737 [DOI] [PubMed] [Google Scholar]
- O'Brien S. A., Orf J., Skrzypczynska K. M., Tan H., Kim J., DeVoss J., et al. (2021). Activity of tumor-associated macrophage depletion by CSF1R blockade is highly dependent on the tumor model and timing of treatment. Cancer Immunol. Immunother. 70 (8), 2401–2410. 10.1007/s00262-021-02861-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onal S., Turker-Burhan M., Bati-Ayaz G., Yanik H., Pesen-Okvur D. (2021). Breast cancer cells and macrophages in a paracrine-juxtacrine loop. Biomaterials 267, 120412. 10.1016/j.biomaterials.2020.120412 [DOI] [PubMed] [Google Scholar]
- Orange S. T., Leslie J., Ross M., Mann D. A., Wackerhage H. (2023). The exercise IL-6 enigma in cancer. Trends Endocrinol. Metab. 34, 749–763. 10.1016/j.tem.2023.08.001 [DOI] [PubMed] [Google Scholar]
- Pereira J. A., Lanzar Z., Clark J. T., Hart A. P., Douglas B. B., Shallberg L., et al. (2023). PD-1 and CTLA-4 exert additive control of effector regulatory T cells at homeostasis. Front. Immunol. 14, 997376. 10.3389/fimmu.2023.997376 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petty A. J., Owen D. H., Yang Y., Huang X. (2021). Targeting tumor-associated macrophages in cancer immunotherapy. Cancers (Basel) 13 (21), 5318. 10.3390/cancers13215318 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfefferle M., Dubach I. L., Buzzi R. M., Dürst E., Schulthess-Lutz N., Baselgia L., et al. (2023). Antibody-induced erythrophagocyte reprogramming of Kupffer cells prevents anti-CD40 cancer immunotherapy-associated liver toxicity. J. Immunother. Cancer 11 (1), e005718. 10.1136/jitc-2022-005718 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfirschke C., Zilionis R., Engblom C., Messemaker M., Zou A. E., Rickelt S., et al. (2022). Macrophage-targeted therapy unlocks antitumoral cross-talk between ifnγ-secreting lymphocytes and IL12-producing dendritic cells. Cancer Immunol. Res. 10 (1), 40–55. 10.1158/2326-6066.CIR-21-0326 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piatakova A., Polakova I., Smahelova J., Johari S. D., Nunvar J., Smahel M. (2021). Distinct responsiveness of tumor-associated macrophages to immunotherapy of tumors with different mechanisms of major histocompatibility complex class I downregulation. Cancers (Basel) 13 (12), 3057. 10.3390/cancers13123057 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pu Y., Ji Q. (2022). Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front. Immunol. 13, 874589. 10.3389/fimmu.2022.874589 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puig-Saus C., Sennino B., Peng S., Wang C. L., Pan Z., Yuen B., et al. (2023). Neoantigen-targeted CD8(+) T cell responses with PD-1 blockade therapy. Nature 615 (7953), 697–704. 10.1038/s41586-023-05787-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qi Y. T., Jiang H., Wu W. T., Zhang F. L., Tian S. Y., Fan W. T., et al. (2022). Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J. Am. Chem. Soc. 144 (22), 9723–9733. 10.1021/jacs.2c01857 [DOI] [PubMed] [Google Scholar]
- Radharani N. N. V., Yadav A. S., Nimma R., Kumar T. V. S., Bulbule A., Chanukuppa V., et al. (2022). Tumor-associated macrophage derived IL-6 enriches cancer stem cell population and promotes breast tumor progression via Stat-3 pathway. Cancer Cell. Int. 22 (1), 122. 10.1186/s12935-022-02527-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rahabi M., Jacquemin G., Prat M., Meunier E., AlaEddine M., Bertrand B., et al. (2020). Divergent roles for macrophage C-type lectin receptors, dectin-1 and mannose receptors, in the intestinal inflammatory response. Cell. Rep. 30 (13), 4386–4398. 10.1016/j.celrep.2020.03.018 [DOI] [PubMed] [Google Scholar]
- Rajamaki K., Taira A., Katainen R., Välimäki N., Kuosmanen A., Plaketti R. M., et al. (2021). Genetic and epigenetic characteristics of inflammatory bowel disease-associated colorectal cancer. Gastroenterology 161 (2), 592–607. 10.1053/j.gastro.2021.04.042 [DOI] [PubMed] [Google Scholar]
- Rapp M., Wintergerst M. W. M., Kunz W. G., Vetter V. K., Knott M. M. L., Lisowski D., et al. (2019). CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J. Exp. Med. 216 (5), 1170–1181. 10.1084/jem.20170277 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ren L., Yi J., Yang Y., Li W., Zheng X., Liu J., et al. (2022). Systematic pan-cancer analysis identifies APOC1 as an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis. Pharmacol. Res. 183, 106376. 10.1016/j.phrs.2022.106376 [DOI] [PubMed] [Google Scholar]
- Revu S., Wu J., Henkel M., Rittenhouse N., Menk A., Delgoffe G. M., et al. (2018). IL-23 and IL-1β drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation. Cell. Rep. 22 (10), 2642–2653. 10.1016/j.celrep.2018.02.044 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roda J. M., Wang Y., Sumner L. A., Phillips G. S., Marsh C. B., Eubank T. D. (2012). Stabilization of HIF-2α induces sVEGFR-1 production from tumor-associated macrophages and decreases tumor growth in a murine melanoma model. J. Immunol. 189 (6), 3168–3177. 10.4049/jimmunol.1103817 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez-Garcia A., Lynn R. C., Poussin M., Eiva M. A., Shaw L. C., O'Connor R. S., et al. (2021). CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat. Commun. 12 (1), 877. 10.1038/s41467-021-20893-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romagnani P., Lasagni L., Annunziato F., Serio M., Romagnani S. (2004). CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol. 25 (4), 201–209. 10.1016/j.it.2004.02.006 [DOI] [PubMed] [Google Scholar]
- Ruiz-Blazquez P., Pistorio V., Fernández-Fernández M., Moles A. (2021). The multifaceted role of cathepsins in liver disease. J. Hepatol. 75 (5), 1192–1202. 10.1016/j.jhep.2021.06.031 [DOI] [PubMed] [Google Scholar]
- Sa J. K., Chang N., Lee H. W., Cho H. J., Ceccarelli M., Cerulo L., et al. (2020). Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biol. 21 (1), 216. 10.1186/s13059-020-02140-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahraei M., Chaube B., Liu Y., Sun J., Kaplan A., Price N. L., et al. (2019). Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. J. Clin. Invest. 129 (12), 5518–5536. 10.1172/JCI127125 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakama S., Kurusu K., Morita M., Oizumi T., Masugata S., Oka S., et al. (2021). An enriched environment alters DNA repair and inflammatory responses after radiation exposure. Front. Immunol. 12, 760322. 10.3389/fimmu.2021.760322 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanchez-Paulete A. R., Mateus-Tique J., Mollaoglu G., Nielsen S. R., Marks A., Lakshmi A., et al. (2022). Targeting macrophages with CAR T cells delays solid tumor progression and enhances antitumor immunity. Cancer Immunol. Res. 10 (11), 1354–1369. 10.1158/2326-6066.CIR-21-1075 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saraiva M., Vieira P., O'Garra A. (2020). Biology and therapeutic potential of interleukin-10. J. Exp. Med. 217 (1), e20190418. 10.1084/jem.20190418 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scavuzzi B. M., van Drongelen V., Holoshitz J. (2022). HLA-G and the MHC cusp theory. Front. Immunol. 13, 814967. 10.3389/fimmu.2022.814967 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaaf M. B., Garg A. D., Agostinis P. (2018). Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell. Death Dis. 9 (2), 115. 10.1038/s41419-017-0061-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schito L., Rey S. (2020). Hypoxia: turning vessels into vassals of cancer immunotolerance. Cancer Lett. 487, 74–84. 10.1016/j.canlet.2020.05.015 [DOI] [PubMed] [Google Scholar]
- Serbulea V., Upchurch C. M., Ahern K. W., Bories G., Voigt P., DeWeese D. E., et al. (2018). Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol. Metab. 7, 23–34. 10.1016/j.molmet.2017.11.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma N., Atolagbe O. T., Ge Z., Allison J. P. (2021). LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J. Exp. Med. 218 (7), e20201811. 10.1084/jem.20201811 [DOI] [PMC free article] [PubMed] [Google Scholar]
- She L., Qin Y., Wang J., Liu C., Zhu G., Li G., et al. (2018). Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell. Int. 18, 120. 10.1186/s12935-018-0620-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepherd A. J., Mickle A. D., Golden J. P., Mack M. R., Halabi C. M., de Kloet A. D., et al. (2018). Macrophage angiotensin II type 2 receptor triggers neuropathic pain. Proc. Natl. Acad. Sci. U. S. A. 115 (34), E8057–E8066. 10.1073/pnas.1721815115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Q., Shen Q., Liu Y., Shi Y., Huang W., Wang X., et al. (2022). Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell. 40 (10), 1207–1222 e10. 10.1016/j.ccell.2022.08.012 [DOI] [PubMed] [Google Scholar]
- Shinchi Y., Ishizuka S., Komohara Y., Matsubara E., Mito R., Pan C., et al. (2022). The expression of PD-1 ligand 1 on macrophages and its clinical impacts and mechanisms in lung adenocarcinoma. Cancer Immunol. Immunother. 71 (11), 2645–2661. 10.1007/s00262-022-03187-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simonetta F., Lohmeyer J. K., Hirai T., Maas-Bauer K., Alvarez M., Wenokur A. S., et al. (2021). Allogeneic CAR invariant natural killer T cells exert potent antitumor effects through host CD8 T-cell cross-priming. Clin. Cancer Res. 27 (21), 6054–6064. 10.1158/1078-0432.CCR-21-1329 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siu L. L., Wang D., Hilton J., Geva R., Rasco D., Perets R., et al. (2022). Correction: first-in-Class anti-immunoglobulin-like transcript 4 myeloid-specific antibody MK-4830 abrogates a PD-1 resistance mechanism in patients with advanced solid tumors. Clin. Cancer Res. 28 (8), 1734. 10.1158/1078-0432.CCR-22-0564 [DOI] [PubMed] [Google Scholar]
- Stanley E. R., Chitu V. (2014). CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6 (6), a021857. 10.1101/cshperspect.a021857 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su C., Zhang J., Yarden Y., Fu L. (2021). The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct. Target Ther. 6 (1), 109. 10.1038/s41392-021-00499-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sumitomo R., Hirai T., Fujita M., Murakami H., Otake Y., Huang C. L. (2019). PD-L1 expression on tumor-infiltrating immune cells is highly associated with M2 TAM and aggressive malignant potential in patients with resected non-small cell lung cancer. Lung Cancer 136, 136–144. 10.1016/j.lungcan.2019.08.023 [DOI] [PubMed] [Google Scholar]
- Sun L., Wang Q., Chen B., Zhao Y., Shen B., Wang H., et al. (2018). Gastric cancer mesenchymal stem cells derived IL-8 induces PD-L1 expression in gastric cancer cells via STAT3/mTOR-c-Myc signal axis. Cell. Death Dis. 9 (9), 928. 10.1038/s41419-018-0988-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taban Q., Mumtaz P. T., Masoodi K. Z., Haq E., Ahmad S. M. (2022). Scavenger receptors in host defense: from functional aspects to mode of action. Cell. Commun. Signal 20 (1), 2. 10.1186/s12964-021-00812-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taki M., Abiko K., Baba T., Hamanishi J., Yamaguchi K., Murakami R., et al. (2018). Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat. Commun. 9 (1), 1685. 10.1038/s41467-018-03966-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan I. L., Arifa R. D. N., Rallapalli H., Kana V., Lao Z., Sanghrajka R. M., et al. (2021). CSF1R inhibition depletes tumor-associated macrophages and attenuates tumor progression in a mouse sonic Hedgehog-Medulloblastoma model. Oncogene 40 (2), 396–407. 10.1038/s41388-020-01536-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang P. M., Zhou S., Meng X. M., Wang Q. M., Li C. J., Lian G. Y., et al. (2017). Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat. Commun. 8, 14677. 10.1038/ncomms14677 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang P. M., Nikolic-Paterson D. J., Lan H. Y. (2019). Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15 (3), 144–158. 10.1038/s41581-019-0110-2 [DOI] [PubMed] [Google Scholar]
- Tang P. M., Zhang Y. Y., Xiao J., Tang P., Chung J. Y. F., Li J., et al. (2020). Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc. Natl. Acad. Sci. U. S. A. 117 (34), 20741–20752. 10.1073/pnas.1917663117 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang P. M., Zhang Y. Y., Hung J. S. C., Chung J. Y. F., Huang X. R., To K. F., et al. (2021a). DPP4/CD32b/NF-κB circuit: a novel druggable target for inhibiting CRP-driven diabetic nephropathy. Mol. Ther. 29 (1), 365–375. 10.1016/j.ymthe.2020.08.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang P. C., Chung J. Y. F., Xue V. W. W., Xiao J., Meng X. M., Huang X. R., et al. (2021b). Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Adv. Sci. (Weinh) 9, e2101235. 10.1002/advs.202101235 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang P. C., Chung J. Y. F., Xue V. W. W., Xiao J., Meng X. M., Huang X. R., et al. (2022a). Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Adv. Sci. (Weinh) 9 (1), e2101235. 10.1002/advs.202101235 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang P. C., Chung J. Y. F., Liao J., Chan M. K. K., Chan A. S. W., Cheng G., et al. (2022b). Single-cell RNA sequencing uncovers a neuron-like macrophage subset associated with cancer pain. Sci. Adv. 8 (40), eabn5535. 10.1126/sciadv.abn5535 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang X. X., Shimada H., Ikegaki N. (2022c). Macrophage-mediated anti-tumor immunity against high-risk neuroblastoma. Genes Immun. 23 (3-4), 129–140. 10.1038/s41435-022-00172-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang P. C., Zhang Y. Y., Li J. S. F., Chan M., Chen J., Tang Y., et al. (2022d). LncRNA-dependent mechanisms of transforming growth factor-β: from tissue fibrosis to cancer progression. Noncoding RNA 8 (3), 36. 10.3390/ncrna8030036 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taniguchi S., Elhance A., Van Duzer A., Kumar S., Leitenberger J. J., Oshimori N. (2020). Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 369 (6501), eaay1813. 10.1126/science.aay1813 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanito K., Nii T., Yokoyama Y., Oishi H., Shibata M., Hijii S., et al. (2023). Engineered macrophages acting as a trigger to induce inflammation only in tumor tissues. J. Control Release 361, 885–895. 10.1016/j.jconrel.2023.04.010 [DOI] [PubMed] [Google Scholar]
- Teng K. Y., Han J., Zhang X., Hsu S. H., He S., Wani N. A., et al. (2017). Blocking the CCL2-CCR2 Axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol. Cancer Ther. 16 (2), 312–322. 10.1158/1535-7163.MCT-16-0124 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian K., Du G., Wang X., Wu X., Li L., Liu W., et al. (2022). MMP-9 secreted by M2-type macrophages promotes Wilms' tumour metastasis through the PI3K/AKT pathway. Mol. Biol. Rep. 49 (5), 3469–3480. 10.1007/s11033-022-07184-9 [DOI] [PubMed] [Google Scholar]
- Tiwari J. K., Negi S., Kashyap M., Nizamuddin S., Singh A., Khattri A. (2021). Pan-cancer analysis shows enrichment of macrophages, overexpression of checkpoint molecules, inhibitory cytokines, and immune exhaustion signatures in EMT-high tumors. Front. Oncol. 11, 793881. 10.3389/fonc.2021.793881 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tlili A., Pintard C., Hurtado-Nedelec M., Liu D., Marzaioli V., Thieblemont N., et al. (2023). ROCK2 interacts with p22phox to phosphorylate p47phox and to control NADPH oxidase activation in human monocytes. Proc. Natl. Acad. Sci. U. S. A. 120 (3), e2209184120. 10.1073/pnas.2209184120 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomlins S. A., Khazanov N. A., Bulen B. J., Hovelson D. H., Shreve M. J., Lamb L. E., et al. (2023). Development and validation of an integrative pan-solid tumor predictor of PD-1/PD-L1 blockade benefit. Commun. Med. (Lond) 3 (1), 14. 10.1038/s43856-023-00243-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trzupek D., Dunstan M., Cutler A. J., Lee M., Godfrey L., Jarvis L., et al. (2020). Discovery of CD80 and CD86 as recent activation markers on regulatory T cells by protein-RNA single-cell analysis. Genome Med. 12 (1), 55. 10.1186/s13073-020-00756-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tu M. M., Abdel-Hafiz H. A., Jones R. T., Jean A., Hoff K. J., Duex J. E., et al. (2020). Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun. Biol. 3 (1), 720. 10.1038/s42003-020-01441-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tu M., Klein L., Espinet E., Georgomanolis T., Wegwitz F., Li X., et al. (2021a). TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nat. Cancer 2 (11), 1185–1203. 10.1038/s43018-021-00258-w [DOI] [PubMed] [Google Scholar]
- Tu D., Dou J., Wang M., Zhuang H., Zhang X. (2021b). M2 macrophages contribute to cell proliferation and migration of breast cancer. Cell. Biol. Int. 45 (4), 831–838. 10.1002/cbin.11528 [DOI] [PubMed] [Google Scholar]
- Turrell F. K., Orha R., Guppy N. J., Gillespie A., Guelbert M., Starling C., et al. (2023). Age-associated microenvironmental changes highlight the role of PDGF-C in ER(+) breast cancer metastatic relapse. Nat. Cancer 4 (4), 468–484. 10.1038/s43018-023-00525-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Sluis T. C., Beyrend G., van der Gracht E. T. I., Abdelaal T., Jochems S. P., Belderbos R. A., et al. (2023). OX40 agonism enhances PD-L1 checkpoint blockade by shifting the cytotoxic T cell differentiation spectrum. Cell. Rep. Med. 4 (3), 100939. 10.1016/j.xcrm.2023.100939 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Elsas M. J., Labrie C., Etzerodt A., Charoentong P., van Stigt Thans J. J. C., Van Hall T., et al. (2023). Invasive margin tissue-resident macrophages of high CD163 expression impede responses to T cell-based immunotherapy. J. Immunother. Cancer 11 (3), e006433. 10.1136/jitc-2022-006433 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vayrynen J. P., Haruki K., Lau M. C., Väyrynen S. A., Zhong R., Dias Costa A., et al. (2021). The prognostic role of macrophage polarization in the colorectal cancer microenvironment. Cancer Immunol. Res. 9 (1), 8–19. 10.1158/2326-6066.CIR-20-0527 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidyarthi A., Khan N., Agnihotri T., Negi S., Das D. K., Aqdas M., et al. (2018). TLR-3 stimulation skews M2 macrophages to M1 through IFN-αβ signaling and restricts tumor progression. Front. Immunol. 9, 1650. 10.3389/fimmu.2018.01650 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viitala M., Virtakoivu R., Tadayon S., Rannikko J., Jalkanen S., Hollmén M. (2019). Immunotherapeutic blockade of macrophage clever-1 reactivates the CD8+ T-cell response against immunosuppressive tumors. Clin. Cancer Res. 25 (11), 3289–3303. 10.1158/1078-0432.CCR-18-3016 [DOI] [PubMed] [Google Scholar]
- Virtakoivu R., Rannikko J. H., Viitala M., Vaura F., Takeda A., Lönnberg T., et al. (2021). Systemic blockade of clever-1 elicits lymphocyte activation alongside checkpoint molecule downregulation in patients with solid tumors: results from a phase I/II clinical trial. Clin. Cancer Res. 27 (15), 4205–4220. 10.1158/1078-0432.CCR-20-4862 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X., Khalil R. A. (2018). Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol. 81, 241–330. 10.1016/bs.apha.2017.08.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang H., Sun Y., Zhou X., Chen C., Jiao L., Li W., et al. (2020). CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J. Immunother. Cancer 8 (2), e000905. 10.1136/jitc-2020-000905 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z., Guan D., Huo J., Biswas S. K., Huang Y., Yang Y., et al. (2021a). IL-10 enhances human natural killer cell effector functions via metabolic reprogramming regulated by mTORC1 signaling. Front. Immunol. 12, 619195. 10.3389/fimmu.2021.619195 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang G., Xu D., Zhang Z., Li X., Shi J., Sun J., et al. (2021b). The pan-cancer landscape of crosstalk between epithelial-mesenchymal transition and immune evasion relevant to prognosis and immunotherapy response. NPJ Precis. Oncol. 5 (1), 56. 10.1038/s41698-021-00200-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K., Donnelly C. R., Jiang C., Liao Y., Luo X., Tao X., et al. (2021c). STING suppresses bone cancer pain via immune and neuronal modulation. Nat. Commun. 12 (1), 4558. 10.1038/s41467-021-24867-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S., Yang Y., Ma P., Zha Y., Zhang J., Lei A., et al. (2022). CAR-macrophage: an extensive immune enhancer to fight cancer. EBioMedicine 76, 103873. 10.1016/j.ebiom.2022.103873 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C., Barnoud C., Cenerenti M., Sun M., Caffa I., Kizil B., et al. (2023). Dendritic cells direct circadian anti-tumour immune responses. Nature 614 (7946), 136–143. 10.1038/s41586-022-05605-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei Z., Oh J., Flavell R. A., Crawford J. M. (2022). LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature 609 (7926), 348–353. 10.1038/s41586-022-05111-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wen Y., Lambrecht J., Ju C., Tacke F. (2021). Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell. Mol. Immunol. 18 (1), 45–56. 10.1038/s41423-020-00558-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willingham S. B., Volkmer J. P., Gentles A. J., Sahoo D., Dalerba P., Mitra S. S., et al. (2012). The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. U. S. A. 109 (17), 6662–6667. 10.1073/pnas.1121623109 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler J., Abisoye-Ogunniyan A., Metcalf K. J., Werb Z. (2020). Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11 (1), 5120. 10.1038/s41467-020-18794-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H., Zhong Z., Wang A., Yuan C., Ning K., Hu H., et al. (2020a). LncRNA FTX represses the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via regulating the M1/M2 polarization of Kupffer cells. Cancer Cell. Int. 20, 266. 10.1186/s12935-020-01354-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J., Yang H., Cheng J., Zhang L., Ke Y., Zhu Y., et al. (2020b). Knockdown of milk-fat globule EGF factor-8 suppresses glioma progression in GL261 glioma cells by repressing microglial M2 polarization. J. Cell. Physiol. 235 (11), 8679–8690. 10.1002/jcp.29712 [DOI] [PubMed] [Google Scholar]
- Wu X., Wang Z., Shi J., Yu X., Li C., Liu J., et al. (2022a). Macrophage polarization toward M1 phenotype through NF-κB signaling in patients with Behçet's disease. Arthritis Res. Ther. 24 (1), 249. 10.1186/s13075-022-02938-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu M., Zhang X., Zhang W., Chiou Y. S., Qian W., Liu X., et al. (2022b). Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nat. Commun. 13 (1), 1371. 10.1038/s41467-022-29018-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu B., Shi X., Jiang M., Liu H. (2023). Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol. Cancer 22 (1), 38. 10.1186/s12943-023-01748-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia Q., Jia J., Hu C., Lu J., Li J., Xu H., et al. (2022). Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma. Oncogene 41 (6), 865–877. 10.1038/s41388-021-02133-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao L., He Y., Peng F., Yang J., Yuan C. (2020). Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J. Immunol. Res. 2020, 9731049. 10.1155/2020/9731049 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie Y., Chen Z., Zhong Q., Zheng Z., Chen Y., Shangguan W., et al. (2021). M2 macrophages secrete CXCL13 to promote renal cell carcinoma migration, invasion, and EMT. Cancer Cell. Int. 21 (1), 677. 10.1186/s12935-021-02381-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie T., Fu D. J., Li Z. M., Lv D. J., Song X. L., Yu Y. Z., et al. (2022). CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol. Cancer 21 (1), 173. 10.1186/s12943-022-01630-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu M., Wang X., Li Y., Geng X., Jia X., Zhang L., et al. (2021a). Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manner. Front. Immunol. 12, 618501. 10.3389/fimmu.2021.618501 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu M., Wang Y., Xia R., Wei Y., Wei X. (2021b). Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell. Prolif. 54 (10), e13115. 10.1111/cpr.13115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Y., Zeng H., Jin K., Liu Z., Zhu Y., Xu L., et al. (2022). Immunosuppressive tumor-associated macrophages expressing interlukin-10 conferred poor prognosis and therapeutic vulnerability in patients with muscle-invasive bladder cancer. J. Immunother. Cancer 10 (3), e003416. 10.1136/jitc-2021-003416 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xue V. W., Chung J. Y. F., Tang P. C. T., Chan A. S. W., To T. H. W., Chung J. S. Y., et al. (2021). USMB-shMincle: a virus-free gene therapy for blocking M1/M2 polarization of tumor-associated macrophages. Mol. Ther. Oncolytics 23, 26–37. 10.1016/j.omto.2021.08.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang H. D., Kim H. S., Kim S. Y., Na M. J., Yang G., Eun J. W., et al. (2019). HDAC6 suppresses let-7i-5p to elicit TSP1/CD47-mediated anti-tumorigenesis and phagocytosis of hepatocellular carcinoma. Hepatology 70 (4), 1262–1279. 10.1002/hep.30657 [DOI] [PubMed] [Google Scholar]
- Yang L., Shi P., Zhao G., Xu J., Peng W., Zhang J., et al. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target Ther. 5 (1), 8. 10.1038/s41392-020-0110-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang K., Xie Y., Xue L., Li F., Luo C., Liang W., et al. (2023a). M2 tumor-associated macrophage mediates the maintenance of stemness to promote cisplatin resistance by secreting TGF-β1 in esophageal squamous cell carcinoma. J. Transl. Med. 21 (1), 26. 10.1186/s12967-022-03863-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Q., Dai H., Cheng Y., Wang B., Xu J., Zhang Y., et al. (2023b). Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine. Cell. Rep. 42 (4), 112346. 10.1016/j.celrep.2023.112346 [DOI] [PubMed] [Google Scholar]
- Yao R. R., Li J. H., Zhang R., Chen R. X., Wang Y. H. (2018). M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway. World J. Surg. Oncol. 16 (1), 9. 10.1186/s12957-018-1312-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao Y., Zhang T., Ru X., Qian J., Tong Z., Li X., et al. (2020). Constitutively expressed MHC class Ib molecules regulate macrophage M2b polarization and sepsis severity in irradiated mice. J. Leukoc. Biol. 107 (3), 445–453. 10.1002/JLB.1AB1219-125RR [DOI] [PubMed] [Google Scholar]
- Yau E., Yang L., Chen Y., Umstead T. M., Atkins H., Katz Z. E., et al. (2023). Surfactant protein A alters endosomal trafficking of influenza A virus in macrophages. Front. Immunol. 14, 919800. 10.3389/fimmu.2023.919800 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yen J. H., Huang W. C., Lin S. C., Huang Y. W., Chio W. T., Tsay G. J., et al. (2022). Metabolic remodeling in tumor-associated macrophages contributing to antitumor activity of cryptotanshinone by regulating TRAF6-ASK1 axis. Mol. Ther. Oncolytics 26, 158–174. 10.1016/j.omto.2022.06.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yogev N., Bedke T., Kobayashi Y., Brockmann L., Lukas D., Regen T., et al. (2022). CD4(+) T-cell-derived IL-10 promotes CNS inflammation in mice by sustaining effector T cell survival. Cell. Rep. 38 (13), 110565. 10.1016/j.celrep.2022.110565 [DOI] [PubMed] [Google Scholar]
- Yu L., Yang F., Zhang F., Guo D., Li L., Wang X., et al. (2018). CD69 enhances immunosuppressive function of regulatory T-cells and attenuates colitis by prompting IL-10 production. Cell. Death Dis. 9 (9), 905. 10.1038/s41419-018-0927-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Y., Ke L., Xia W. X., Xiang Y., Lv X., Bu J. (2019). Elevated levels of TNF-α and decreased levels of CD68-positive macrophages in primary tumor tissues are unfavorable for the survival of patients with nasopharyngeal carcinoma. Technol. Cancer Res. Treat. 18, 1533033819874807. 10.1177/1533033819874807 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Q., Wang Y., Dong L., He Y., Liu R., Yang Q., et al. (2020). Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation. Front. Cell. Infect. Microbiol. 10, 287. 10.3389/fcimb.2020.00287 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan S., Stewart K. S., Yang Y., Abdusselamoglu M. D., Parigi S. M., Feinberg T. Y., et al. (2022). Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature 612 (7940), 555–563. 10.1038/s41586-022-05475-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zappasodi R., Serganova I., Cohen I. J., Maeda M., Shindo M., Senbabaoglu Y., et al. (2021). CTLA-4 blockade drives loss of T(reg) stability in glycolysis-low tumours. Nature 591 (7851), 652–658. 10.1038/s41586-021-03326-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng X. Y., Xie H., Yuan J., Jiang X. Y., Yong J. H., Zeng D., et al. (2019). M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol. Ther. 20 (7), 956–966. 10.1080/15384047.2018.1564567 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang F., Parayath N. N., Ene C. I., Stephan S. B., Koehne A. L., Coon M. E., et al. (2019). Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10 (1), 3974. 10.1038/s41467-019-11911-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang F., Mears J. R., Shakib L., Beynor J. I., Shanaj S., Korsunsky I., et al. (2021a). IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 13 (1), 64. 10.1186/s13073-021-00881-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang B., Zhang Y., Jiang X., Su H., Wang Q., Wudu M., et al. (2021b). JMJD8 promotes malignant progression of lung cancer by maintaining EGFR stability and EGFR/PI3K/AKT pathway activation. J. Cancer 12 (4), 976–987. 10.7150/jca.50234 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang S., Rautela J., Bediaga N. G., Kolesnik T. B., You Y., Nie J., et al. (2023). CIS controls the functional polarization of GM-CSF-derived macrophages. Cell. Mol. Immunol. 20 (1), 65–79. 10.1038/s41423-022-00957-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao S., Mi Y., Guan B., Zheng B., Wei P., Gu Y., et al. (2020). Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J. Hematol. Oncol. 13 (1), 156. 10.1186/s13045-020-00991-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao D., Yang F., Wang Y., Li S., Li Y., Hou F., et al. (2022a). ALK1 signaling is required for the homeostasis of Kupffer cells and prevention of bacterial infection. J. Clin. Invest. 132 (3), e150489. 10.1172/JCI150489 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao X., Di Q., Liu H., Quan J., Ling J., Zhao Z., et al. (2022b). MEF2C promotes M1 macrophage polarization and Th1 responses. Cell. Mol. Immunol. 19 (4), 540–553. 10.1038/s41423-022-00841-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Z., Peng Y., Wu X., Meng S., Yu W., Zhao J., et al. (2019). CCL18 secreted from M2 macrophages promotes migration and invasion via the PI3K/Akt pathway in gallbladder cancer. Cell. Oncol. (Dordr) 42 (1), 81–92. 10.1007/s13402-018-0410-8 [DOI] [PubMed] [Google Scholar]
- Zhou H. M., Zhang J. G., Zhang X., Li Q. (2021). Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct. Target Ther. 6 (1), 62. 10.1038/s41392-020-00430-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Y., Takano T., Li X., Wang Y., Wang R., Zhu Z., et al. (2022). β-elemene regulates M1-M2 macrophage balance through the ERK/JNK/P38 MAPK signaling pathway. Commun. Biol. 5 (1), 519. 10.1038/s42003-022-03369-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Y., Cheng L., Liu L., Li X. (2023a). NK cells are never alone: crosstalk and communication in tumour microenvironments. Mol. Cancer 22 (1), 34. 10.1186/s12943-023-01737-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou H., Gan M., Jin X., Dai M., Wang Y., Lei Y., et al. (2023b). [Corrigendum] miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α. Int. J. Oncol. 62 (1), 1. 10.3892/ijo.2022.5449 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu R., Gires O., Zhu L., Liu J., Li J., Yang H., et al. (2019). TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat. Commun. 10 (1), 2863. 10.1038/s41467-019-10739-3 [DOI] [PMC free article] [PubMed] [Google Scholar]