Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Oct;76(2):293–296. doi: 10.1104/pp.76.2.293

Deferral of Senescence and Abscission by Chemical Inhibition of Ethylene Synthesis and Action in Bean Explants 1

Mosbah M Kushad 1,2, B W Poovaiah 1
PMCID: PMC1064279  PMID: 16663834

Abstract

Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO3, and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, and their effect on senescence was followed by measuring chlorophyll and soluble protein in the distal (pulvinus) sections. AVG at concentrations between 1 and 100 micromolar inhibited ethylene synthesis by about 80 to 90% compared to the control during sampling periods of 24 and 48 hours after treatment. This compound also delayed the development of abscission and senescence. Treatment with AgNO3 at concentrations between 1 and 100 micromolar progressively reduced ethylene production, but to a lesser extent than AVG. The effects of AgNO3 on senescence and abscission were quite similar to those of AVG. Sodium benzoate at 50 micromolar to 5 millimolar did not inhibit ethylene synthesis during the first 24 hours, but appreciably inhibited ethylene synthesis 48 hours after treatment. It also delayed the development of abscission and senescence. The effects of AVG, Ag+, and sodium benzoate suggest that ethylene could play a major role in both the senescence induction phase and the separation phase in bean explants.

Full text

PDF
293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharoni N., Anderson J. D., Lieberman M. Production and action of ethylene in senescing leaf discs: effect of indoleacetic Acid, kinetin, silver ion, and carbon dioxide. Plant Physiol. 1979 Nov;64(5):805–809. doi: 10.1104/pp.64.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aharoni N., Lieberman M. Ethylene as a regulator of senescence in tobacco leaf discs. Plant Physiol. 1979 Nov;64(5):801–804. doi: 10.1104/pp.64.5.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aharoni N., Lieberman M. Patterns of ehtylene production in senescing leaves. Plant Physiol. 1979 Nov;64(5):796–800. doi: 10.1104/pp.64.5.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Apelbaum A., Wang S. Y., Burgoon A. C., Baker J. E., Lieberman M. Inhibition of the Conversion of 1-Aminocyclopropane-1-carboxylic Acid to Ethylene by Structural Analogs, Inhibitors of Electron Transfer, Uncouplers of Oxidative Phosphorylation, and Free Radical Scavengers. Plant Physiol. 1981 Jan;67(1):74–79. doi: 10.1104/pp.67.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker J. E., Lieberman M., Anderson J. D. Inhibition of ethylene production in fruit slices by a rhizobitoxine analog and free radical scavengers. Plant Physiol. 1978 Jun;61(6):886–888. doi: 10.1104/pp.61.6.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beyer E. M. A potent inhibitor of ethylene action in plants. Plant Physiol. 1976 Sep;58(3):268–271. doi: 10.1104/pp.58.3.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beyer E. M. Effect of silver ion, carbon dioxide, and oxygen on ethylene action and metabolism. Plant Physiol. 1979 Jan;63(1):169–173. doi: 10.1104/pp.63.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beyer E. M., Morgan P. W. Abscission: the role of ethylene modification of auxin transport. Plant Physiol. 1971 Aug;48(2):208–212. doi: 10.1104/pp.48.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  10. Jackson M. B., Osborne D. J. Ethylene, the natural regulator of leaf abscission. Nature. 1970 Mar 14;225(5237):1019–1022. doi: 10.1038/2251019a0. [DOI] [PubMed] [Google Scholar]
  11. Kende H., Hanson A. D. Relationship between Ethylene Evolution and Senescence in Morning-Glory Flower Tissue. Plant Physiol. 1976 Apr;57(4):523–527. doi: 10.1104/pp.57.4.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konze J. R., Schilling N., Kende H. Enhancement of ethylene formation by selenoamino acids. Plant Physiol. 1978 Sep;62(3):397–401. doi: 10.1104/pp.62.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morgan P. W., Durham J. I. Leaf Age and Ethylene-induced Abscission. Plant Physiol. 1973 Dec;52(6):667–670. doi: 10.1104/pp.52.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Owens L. D., Lieberman M., Kunishi A. Inhibition of ethylene production by rhizobitoxine. Plant Physiol. 1971 Jul;48(1):1–4. doi: 10.1104/pp.48.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Poovaiah B. W., Leopold A. C. Deferral of leaf senescence with calcium. Plant Physiol. 1973 Sep;52(3):236–239. doi: 10.1104/pp.52.3.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Poovaiah B. W., Leopold A. C. Inhibition of abscission by calcium. Plant Physiol. 1973 May;51(5):848–851. doi: 10.1104/pp.51.5.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rando R. R. Chemistry and enzymology of kcat inhibitors. Science. 1974 Jul 26;185(4148):320–324. doi: 10.1126/science.185.4148.320. [DOI] [PubMed] [Google Scholar]
  18. Sagee O., Goren R., Riov J. Abscission of Citrus Leaf Explants: INTERRELATIONSHIPS OF ABSCISIC ACID, ETHYLENE, AND HYDROLYTIC ENZYMES. Plant Physiol. 1980 Oct;66(4):750–753. doi: 10.1104/pp.66.4.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yu Y. B., Adams D. O., Yang S. F. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch Biochem Biophys. 1979 Nov;198(1):280–286. doi: 10.1016/0003-9861(79)90420-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES