Abstract
The participation of pyrophosphate-dependent phosphofructokinase (PPi-PFK) in plant glycolysis was examined using extracts from pea seeds (Pisum sativum L. cv Alaska). Glycolysis starting with fructose 6-phosphate was measured under aerobic conditions as the accumulation of pyruvate. Pyruvate accumulated in a medium containing PPi and adenosine diphosphate at about two-thirds of the rate in a medium containing adenosine diphosphate and adenosine triphosphate (ATP). The PPi-dependent pyruvate accumulation had the same reactant requirements and sensitivity to glycolysis inhibitors, sodium fluoride, and iodoacetamide, as the well-established ATP-dependent glycolysis. Added fructose 2,6-bisphosphate stimulated both the PPi-dependent pyruvate accumulation and PPi-PFK activity whereas this modulator had no effect on ATP-dependent glycolysis or ATP-PFK. Collectively these results demonstrate a PPi-dependent glycolytic pathway in plants which is responsive to fructose 2,6-bisphosphate.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Carnal N. W., Black C. C. Phosphofructokinase activities in photosynthetic organisms : the occurrence of pyrophosphate-dependent 6-phosphofructokinase in plants and algae. Plant Physiol. 1983 Jan;71(1):150–155. doi: 10.1104/pp.71.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carnal N. W., Black C. C. Pyrophosphate-dependent 6-phosphofructokinase, a new glycolytic enzyme in pineapple leaves. Biochem Biophys Res Commun. 1979 Jan 15;86(1):20–26. doi: 10.1016/0006-291x(79)90376-0. [DOI] [PubMed] [Google Scholar]
- Flodgaard H., Fleron P. Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of (Mg2+), (K+), and ionic strength determined from equilibrium studies of the reaction. J Biol Chem. 1974 Jun 10;249(11):3465–3474. [PubMed] [Google Scholar]
- HATCH M. D., TURNER J. F. Glycolysis by an extract from pea seeds. Biochem J. 1958 Aug;69(4):495–501. doi: 10.1042/bj0690495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miernyk J. A., Dennis D. T. Activation of the plastid isozyme of phosphofructokinase from developing endosperm of Ricinus communis by fructose 2,6-bisphosphate. Biochem Biophys Res Commun. 1982 Apr 14;105(3):793–798. doi: 10.1016/0006-291x(82)91039-7. [DOI] [PubMed] [Google Scholar]
- O'Brien W. E., Bowien S., Wood H. G. Isolation and characterization of a pyrophosphate-dependent phosphofructokinase from Propionibacterium shermanii. J Biol Chem. 1975 Nov 25;250(22):8690–8695. [PubMed] [Google Scholar]
- Reeves R. E., South D. J., Blytt H. J., Warren L. G. Pyrophosphate:D-fructose 6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructokinase. J Biol Chem. 1974 Dec 25;249(24):7737–7741. [PubMed] [Google Scholar]
- Stitt M., Gerhardt R., Kürzel B., Heldt H. W. A role for fructose 2,6-bisphosphate in the regulation of sucrose synthesis in spinach leaves. Plant Physiol. 1983 Aug;72(4):1139–1141. doi: 10.1104/pp.72.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]
- Wu M. X., Smyth D. A., Black C. C. Fructose 2,6-bisphosphate and the regulation of pyrophosphate-dependent phosphofructokinase activity in germinating pea seeds. Plant Physiol. 1983 Sep;73(1):188–191. doi: 10.1104/pp.73.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]