Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Oct;76(2):452–455. doi: 10.1104/pp.76.2.452

Effect of Nodulation on Assimilate Remobilization in Soybean

Steven J Crafts-Brandner 1,2,1, Frederick E Below 1,2, James E Harper 1,2, Richard H Hageman 1,2
PMCID: PMC1064309  PMID: 16663863

Abstract

The objectives of this work were to determine the effect of nodulation on dry matter, reduced-N, and phosphorus accumulation and partitioning in above-ground vegetative parts and pods of field-grown soybean (Glycine max [L.] Merr. cv Harosoy).

From comparison of nodulated and nonnodulated isolines, it was estimated that nodulated plants attained 81 and 71% of total-plant (above ground) N from uptake of soil N in 1981 and 1982, respectively. These data, along with visibly greener leaves of nodulated plants, led us to assume that nonnodulated plants were under a moderate N stress relative to nodulated plants. Nonnodulated plants accumulated less total-plant N and partitioned less dry matter and N to the pods, compared with nodulated plants. This occurred even though net photosynthesis, as estimated by rate and amount of dry matter accumulation, was the same for both nonnodulated and nodulated plants. Rate of dry matter and reduced-N accumulation in pods was less for nonnodulated than for nodulated plants while duration of podfill was similar for both isolines. From these data we concluded that moderate N stress affected partitioning of photosynthate rather than net photosynthesis, and that N played a role in translocation of photosynthate to the pods. Total plants (above-ground portion) and pods of both nodulated and nonnodulated plants accumulated similar amounts of phosphorus, which indicated that phosphorus and N accumulation were independent.

Remobilization of nitrogen and phosphorus from vegetation to pods preceded dry matter remobilization. It appeared that either more nitrogen accumulation prior to podfill, or continued nitrogen assimilation during podfill would increase nitrogen and dry matter partitioning to pods, but that increasing photosynthesis without concomitantly increasing nitrogen input may not necessarily result in enhanced seed production.

Full text

PDF
452

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crafts-Brandner S. J., Below F. E., Harper J. E., Hageman R. H. Effects of Pod Removal on Metabolism and Senescence of Nodulating and Nonnodulating Soybean Isolines: II. Enzymes and Chlorophyll. Plant Physiol. 1984 Jun;75(2):318–322. doi: 10.1104/pp.75.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crafts-Brandner S. J., Below F. E., Harper J. E., Hageman R. H. Effects of pod removal on metabolism and senescence of nodulating and nonnodulating soybean isolines: I. Metabolic constituents. Plant Physiol. 1984 Jun;75(2):311–317. doi: 10.1104/pp.75.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Panidis I. P., Kotler M. N., Mintz G. S., Segal B. L., Ross J. J. Right heart endocarditis: clinical and echocardiographic features. Am Heart J. 1984 Apr;107(4):759–764. doi: 10.1016/0002-8703(84)90325-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES