Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Dec;76(4):894–897. doi: 10.1104/pp.76.4.894

Sugar Transport in Isolated Corn Root Protoplasts 1

Willy Lin 1, Mark R Schmitt 1,2, William D Hitz 1, Robert T Giaquinta 1
PMCID: PMC1064401  PMID: 16663966

Abstract

Isolated corn (Zea mays L.) root protoplasts were used to study sucrose and hexose uptake. It is found that glucose was preferentially taken up by the protoplasts over sucrose and other hexoses. Glucose uptake showed a biphasic dependence on external glucose concentration with saturable (Km of 7 millimolar) and linear components. In contrast, sucrose uptake only showed a linear kinetic curve. Sucrose and glucose uptake were linear over a minimum of 1 hour at pH 6.0 and 1 millimolar exogenous sugar concentration. Glucose uptake showed a sharp 42°C temperature optimum, while sucrose uptake showed a lower temperature sensitivity which did not reach a maximum below 50°C. Uptake of both sugars was sensitive to several metabolic inhibitors and external pH. Differences between sucrose and glucose uptake in two different sink tissue (i.e. protoplasts from corn roots and soybean cotyledons) are discussed.

Full text

PDF
894

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheeseman J. M., Lafayette P. R., Gronewald J. W., Hanson J. B. Effect of ATPase inhibitors on cell potential and k influx in corn roots. Plant Physiol. 1980 Jun;65(6):1139–1145. doi: 10.1104/pp.65.6.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Giaquinta R. T., Lin W., Sadler N. L., Franceschi V. R. Pathway of Phloem unloading of sucrose in corn roots. Plant Physiol. 1983 Jun;72(2):362–367. doi: 10.1104/pp.72.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Giaquinta R. T. Phloem loading of sucrose: involvement of membrane ATPase and proton transport. Plant Physiol. 1979 Apr;63(4):744–748. doi: 10.1104/pp.63.4.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grant B. R., Beevers H. Absorption of Sugars by Plant Tissues. Plant Physiol. 1964 Jan;39(1):78–85. doi: 10.1104/pp.39.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Laties G. G. The Relation of Glucose Absorption to Respiration in Potato Slices. Plant Physiol. 1964 May;39(3):391–397. doi: 10.1104/pp.39.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lin W. Inhibition of anion transport in corn root protoplasts. Plant Physiol. 1981 Aug;68(2):435–438. doi: 10.1104/pp.68.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lin W. Potassium and Phosphate Uptake in Corn Roots: Further Evidence for an Electrogenic H/K Exchanger and an OH/Pi Antiporter. Plant Physiol. 1979 May;63(5):952–955. doi: 10.1104/pp.63.5.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lin W., Schmitt M. R., Hitz W. D., Giaquinta R. T. Sugar transport into protoplasts isolated from developing soybean cotyledons : I. Protoplast isolation and general characteristics of sugar transport. Plant Physiol. 1984 Aug;75(4):936–940. doi: 10.1104/pp.75.4.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maguire G. A., Docherty K., Hales C. N. Sugar transport in rat liver lysosomes. Direct demonstration by using labelled sugars. Biochem J. 1983 Apr 15;212(1):211–218. doi: 10.1042/bj2120211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. REGEN D. M., MORGAN H. E. STUDIES OF THE GLUCOSE-TRANSPORT SYSTEM IN THE RABBIT ERYTHROCYTE. Biochim Biophys Acta. 1964 Jan 27;79:151–166. doi: 10.1016/0926-6577(64)90048-8. [DOI] [PubMed] [Google Scholar]
  11. Reinhold L., Eshhar Z. Transport of 3-o-Methylglucose Into and Out of Storage Cells of Daucus carota. Plant Physiol. 1968 Jul;43(7):1023–1030. doi: 10.1104/pp.43.7.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saftner R. A., Wyse R. E. Alkali Cation/Sucrose Co-transport in the Root Sink of Sugar Beet. Plant Physiol. 1980 Nov;66(5):884–889. doi: 10.1104/pp.66.5.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schmitt M. R., Hitz W. D., Lin W., Giaquinta R. T. Sugar Transport into Protoplasts Isolated from Developing Soybean Cotyledons : II. Sucrose Transport Kinetics, Selectivity, and Modeling Studies. Plant Physiol. 1984 Aug;75(4):941–946. doi: 10.1104/pp.75.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shanahan M. F. Cytochalasin B. A natural photoaffinity ligand for labeling the human erythrocyte glucose transporter. J Biol Chem. 1982 Jul 10;257(13):7290–7293. [PubMed] [Google Scholar]
  15. Sze H., Churchill K. A. Mg/KCl-ATPase of plant plasma membranes is an electrogenic pump. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5578–5582. doi: 10.1073/pnas.78.9.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thorne J. H. Characterization of the active sucrose transport system of immature soybean embryos. Plant Physiol. 1982 Oct;70(4):953–958. doi: 10.1104/pp.70.4.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thorne J. H. Morphology and ultrastructure of maternal seed tissues of soybean in relation to the import of photosynthate. Plant Physiol. 1981 May;67(5):1016–1025. doi: 10.1104/pp.67.5.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wyse R. Sucrose uptake by sugar beet tap root tissue. Plant Physiol. 1979 Nov;64(5):837–841. doi: 10.1104/pp.64.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES