Abstract
Concentrations of abscisic acid (ABA) and indole-3-acetic acid (IAA) in seed parts were determined during reproductive development of soybean plants (Glycine max [L.] Merr. cv `Chippewa 64'). The concentration of ABA and IAA changed independently in individual seed parts with time. Measurement of the level of ABA and IAA in whole seeds masked the changes which occurred in individual seed tissues. The concentration of ABA was generally highest and that of IAA was generally lowest in the embryonic axis of soybean seeds. In the testa, the IAA concentration was generally highest while the ABA concentration was generally the lowest compared to other parts of the seed.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bandurski R. S., Schulze A. Concentration of Indole-3-acetic Acid and Its Derivatives in Plants. Plant Physiol. 1977 Aug;60(2):211–213. doi: 10.1104/pp.60.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciha A. J., Brenner M. L., Brun W. A. Rapid separation and quantification of abscisic Acid from plant tissues using high performance liquid chromatography. Plant Physiol. 1977 May;59(5):821–826. doi: 10.1104/pp.59.5.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J. D. Identification and Quantitative Analysis of Indole-3-Acetyl-l-Aspartate from Seeds of Glycine max L. Plant Physiol. 1982 Sep;70(3):749–753. doi: 10.1104/pp.70.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crouch M. L., Tenbarge K. M., Simon A. E., Ferl R. cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J Mol Appl Genet. 1983;2(3):273–283. [PubMed] [Google Scholar]
- Quebedeaux B., Sweetser P. B., Rowell J. C. Abscisic Acid Levels in Soybean Reproductive Structures during Development. Plant Physiol. 1976 Sep;58(3):363–366. doi: 10.1104/pp.58.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setter T. L., Brun W. A., Brenner M. L. Effect of obstructed translocation on leaf abscisic Acid, and associated stomatal closure and photosynthesis decline. Plant Physiol. 1980 Jun;65(6):1111–1115. doi: 10.1104/pp.65.6.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweetser P. B., Swartzfager D. G. Indole-3-acetic Acid Levels of Plant Tissue as Determined by a New High Performance Liquid Chromatographic Method. Plant Physiol. 1978 Feb;61(2):254–258. doi: 10.1104/pp.61.2.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamas I. A., Engels C. J. Role of indoleacetic Acid and abscisic Acid in the correlative control by fruits of axillary bud development and leaf senescence. Plant Physiol. 1981 Aug;68(2):476–481. doi: 10.1104/pp.68.2.476. [DOI] [PMC free article] [PubMed] [Google Scholar]