Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Jan;77(1):113–117. doi: 10.1104/pp.77.1.113

Comparative Water Relations of Phaseolus vulgaris L. and Phaseolus acutifolius Gray 1

Albert H Markhart III 1
PMCID: PMC1064467  PMID: 16663991

Abstract

Leaf area expansion, dry weight, and water relations of Phaseolus vulgaris L. and P. acutifolius Gray were compared during a drying cycle in the greenhouse to understand the characteristics which contribute to the superior drought tolerance of P. acutifolius. Stomates of P. acutifolius closed at a much higher water potential than those of P. vulgaris, delaying dehydration of leaf tissue. P. acutifolius had a more deeply penetrating root system, which also contributes to its drought tolerance. Root-shoot ratios did not differ between the two species either under well watered or water stressed conditions. Leaf osmotic potential was also similar in the two species, with no apparent osmotic adjustment during water stress. These results indicate that P. acutifolius postpones dehydration and suggest that sensitive stomates and a deeply penetrating root system are characteristics which, if incorporated into cultivated beans, might increase their drought tolerance.

Full text

PDF
113

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kanemasu E. T., Tanner C. B. Stomatal diffusion resistance of snap beans. I. Influence of leaf-water potential. Plant Physiol. 1969 Nov;44(11):1547–1552. doi: 10.1104/pp.44.11.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Scholander P. F., Bradstreet E. D., Hemmingsen E. A., Hammel H. T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science. 1965 Apr 16;148(3668):339–346. doi: 10.1126/science.148.3668.339. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES