Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Jan;77(1):179–182. doi: 10.1104/pp.77.1.179

Inhibition of HCO3 Binding to Photosystem II by Atrazine at a Low-Affinity Herbicide Binding Site 1

Alan Stemler 1, Judith Murphy 1
PMCID: PMC1064478  PMID: 16664004

Abstract

In maize chloroplasts, the ratio of HCO3 (anion) binding sites to high-affinity atrazine binding sites is unity. In the dark, atrazine noncompetitively inhibits the binding of half of the HCO3 to the photosystem II (PSII) complexes. The inhibition of binding saturates at 5 micromolar atrazine, little inhibition is seen at 0.5 micromolar atrazine, although the high-affinity herbicide binding sites are nearly filled at this concentration. This means that HCO3 and atrazine interact noncompetitively at a specific low-affinity herbicide binding site that exists on a portion of the PSII complexes. Light abolishes the inhibitory effects of atrazine on HCO3 binding. Based on the assumption that there is one high-affinity atrazine binding site per PSII complex, we conclude that there is also only one binding site for HCO3 with a dissociation constant near 80 micromolar. The location of the HCO3 binding site, and the low-affinity atrazine binding site, is not known.

Full text

PDF
179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Diner B. Cooperativity between photosystem II centers at the level of primary electron transfer. Biochim Biophys Acta. 1974 Dec 19;368(3):371–385. doi: 10.1016/0005-2728(74)90182-0. [DOI] [PubMed] [Google Scholar]
  2. Gardner G. Azidoatrazine: photoaffinity label for the site of triazine herbicide action in chloroplasts. Science. 1981 Feb 27;211(4485):937–940. doi: 10.1126/science.211.4485.937. [DOI] [PubMed] [Google Scholar]
  3. Jursinic P., Stemler A. Changes in [C]Atrazine Binding Associated with the Oxidation-Reduction State of the Secondary Quinone Acceptor of Photosystem II. Plant Physiol. 1983 Nov;73(3):703–708. doi: 10.1104/pp.73.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Pfister K., Radosevich S. R., Arntzen C. J. Modification of Herbicide Binding to Photosystem II in Two Biotypes of Senecio vulgaris L. Plant Physiol. 1979 Dec;64(6):995–999. doi: 10.1104/pp.64.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Stemler A. Forms of Dissolved Carbon Dioxide Required for Photosystem II Activity in Chloroplast Membranes. Plant Physiol. 1980 Jun;65(6):1160–1165. doi: 10.1104/pp.65.6.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Stemler A., Jursinic P. The effects of carbonic anhydrase inhibitors formate, bicarbonate, acetazolamide, and imidazole on photosystem II in maize chloroplasts. Arch Biochem Biophys. 1983 Feb 15;221(1):227–237. doi: 10.1016/0003-9861(83)90139-x. [DOI] [PubMed] [Google Scholar]
  7. Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta. 1977 Apr 11;460(1):113–125. doi: 10.1016/0005-2728(77)90157-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES