Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Jan;77(1):206–210. doi: 10.1104/pp.77.1.206

Inositol and Sugars in Adaptation of Tomato to Salt 1

Robert F Sacher 1, Richard C Staples 1
PMCID: PMC1064483  PMID: 16664009

Abstract

Tomato (Lycopersicon esculentum Mill. cv New Yorker) plants subjected to 100 millimolar NaCl plus Hoagland nutrients exhibited a pattern of wilting, recovery of turgor, and finally recovery of growth at a reduced level, which required 3 days. During the nongrowing, adaptation phase there were immediate increases in free hexoses and sucrose which declined to near control levels as growth resumed. There was a steady increase in myo-inositol content which reached its maximal level at the time of growth resumption. The myo-inositol level then remained elevated for the remainder of the experiment. Myo-inositol constituted two-thirds of the soluble carbohydrate in leaves and three-fourths of the soluble carbohydrate in roots of salt-adapted plants. Plants which were alternated daily between salt and control solutions accumulated less myo-inositol and exhibited less growth than the continuously salt-treated plants. In L. pennellii and in salt-tolerant and salt-sensitive breeding lines selected from L. esculentum × L. pennellii BC(1) and F(8), myo-inositol content was highest in the most tolerant genotypes, intermediate in the normal cultivar, and lowest in the sensitive genotype after treatment with salt.

Full text

PDF
206

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Epstein E., Norlyn J. D., Rush D. W., Kingsbury R. W., Kelley D. B., Cunningham G. A., Wrona A. F. Saline culture of crops: a genetic approach. Science. 1980 Oct 24;210(4468):399–404. doi: 10.1126/science.210.4468.399. [DOI] [PubMed] [Google Scholar]
  2. Leblanc D. J., Ball A. J. A fast one-step method for the silylation of sugars and sugar phosphates. Anal Biochem. 1978 Feb;84(2):574–578. doi: 10.1016/0003-2697(78)90077-5. [DOI] [PubMed] [Google Scholar]
  3. Rick C. M. HYBRIDIZATION BETWEEN LYCOPERSICON ESCULENTUM AND SOLANUM PENNELLII: PHYLOGENETIC AND CYTOGENETIC SIGNIFICANCE. Proc Natl Acad Sci U S A. 1960 Jan;46(1):78–82. doi: 10.1073/pnas.46.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rush D. W., Epstein E. Genotypic Responses to Salinity: Differences between Salt-sensitive and Salt-tolerant Genotypes of the Tomato. Plant Physiol. 1976 Feb;57(2):162–166. doi: 10.1104/pp.57.2.162. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES